Chemistry Release Notes 2017

Publish Date: March 15, 2017

Revision Number: C-2015-002(03/17)-LC

Page Count Difference:

In the latest edition of *Chemistry*, there are 1353 pages compared to the 1349 pages in the last edition. This page count variation is due to errata revisions.

Errata:

Below is a table containing submitted errata, and the resolutions that OpenStax has provided for this latest text.

Issue	Resolution	Severity
Chapter 1: Essential Ideas;		
End of Chapter Exercises In		
Chapter 1, question 90,	Revise question 90 part (a) from "g/cm" to	
there is a typo. 0.97 g/cm	"g/cm^3" as follows: (a) What is the mass of 4.00	
should be 0.97 g/cm^3.	cm^3 of sodium, density = 0.97 g/cm^3?	Туро
Chapter 1.4: Essential Ideas,		
Section: Measurements		
Figure 1, showing the rulers		
is not representative of an		
actual ft/cm comparison. I'm		
not sure how the illusion		
was created, but the image		
clearly suggests that 1 ft is		
30 cm. True, it's close, but		
the error is compounded by		
the point of 90 cm such that		
the 3-ft mark should match		
up with about 91.5 cm, not		
90, which should be clearly		
visible. The problem is due		
to the fact that the 100 mark		
lines up with 40 cm, not		
39.36. That may not seem		
like much, but it is enough.		
Measurements are		
important in chemistry, and	Revise the ruler in Figure 1.23 to correctly show	
so why not do it right?	the alignment of centimeters and feet.	Minor
Chapter 1.4: Essential Ideas,	Revise the answer to exercise 43 as follows: 43.	
Section: Measurements, End	Visit this PhET density simulation and select	
of Chapter Exercises In	Mystery Blocks (c) Order the Mystery Blocks	Туро

section 1.4 Measurements, there is an error in part c of the solution for the last exercise on the page. The solution given is "(c) B/blue/apple (0.64 kg/L) < C/green/gasoline (0.700 kg/L) < C/green/ice (0.920 kg/L) < D/red/diamond (3.53 kg/L) < A/yellow/gold (19.3 kg/L)" This makes no sense, because C/green cannot be both 0.700 kg/L and 0.920 kg/L. I believe the 3rd and 4th blocks are both identified incorrectly, and that the correct solution should be "(c) B/blue/apple (0.64 kg/L) < C/green/gasoline (0.700 kg/L) < D/red/ice (0.920 kg/L) < E/purple/diamond (3.53 kg/L) < A/yellow/gold (19.3 kg/L)".	from least dense to most dense. Explain. Answer: (c) B/blue/apple (0.64 kg/L) < C/green/gasoline (0.700 kg/L) < D/red/ice (0.920 kg/L) < E/purple/diamond (3.53 kg/L) < A/yellow/gold (19.3 kg/L)	
	Revise the paragraph before Example 1.3 Rounding Numbers to say "less than" instead of "lesser than".	Туро
Chapter 1.6: Essential Ideas, Section: Mathematical Treatment of Measurement Results, End of Chapter Exercises Question 77c and 77f: there is a "t" where I believe you mean x (times): (c) the area of an 8.5 t 11- inch sheet of paper in cm2 (e) the estimated mass of the atmosphere, 5.6 t 1015 tons, to kilograms	In parts (c) and (d) of exercise 77, revise "t" to a multiplication symbol as follows: 77. Make the conversion indicated in each of the following: (c) the area of an 8.5 c 11-inch sheet of paper in cm2 (e) the estimated mass of the atmosphere, 5.6 x 1015 tons, to kilograms	Туро
Chapter 2: Atoms, Molecules, and Ions, End of Chapter Exercises In chapter	Revise question 43 part (b) to delete extraneous "and" as follows: (b) the noble gas element with 75 neutrons in its nucleus and 54 electrons in the	Туро

2, question 43 part (b) there is a typo. Change "with and	neutral atom	
75" to "with 75."		
Chapter 2: Atoms, Molecules, and Ions, End of Chapter Exercises, 25 In the answer to Problem 2.25, the fractional abundances are given when the percent abundances are what was asked for. revise "Turkey source: 0.2649 (of 10.0129 amu isotope); US source: 0.2537 (of 10.0129 amu isotope)" to "Turkey source: 26.49% (of 10.0129 amu isotope); US source: 25.37% (of 10.0129 amu isotope)"	In exercise 25, revise the fractional abundances given to percent abundances.	Minor
Chapter 2: Atoms, Molecules, and Ions, End of Chapter Exercises, 48 In Problem 48, revise "MgC2H3O2" to "Mg(C2H3O2)2	Revise part b of exercise 48 as follows: 48. For each of the following compounds, state whether it is ionic or covalent, and if it is ionic, write the symbols for the ions involved: (b) Mg(C2H3O2)2	Minor
Chapter 2: Atoms, Molecules, and Ions, End of Chapter Exercises, 59 In Problem 55, part b), revise "titanium dioxide" to "titanium(IV) oxide"	Revise part d of exercise 59 as follows: 59. The following ionic compounds are found in common household products. Write the formulas for each compound: (d) titanium(IV) oxide	Minor
Chapter 2.3: Atoms, Molecules, and Ions, Section: 2.3 Atomic Structure and Symbolism atomic mass (A) should be mass number (A)	Revise the fifth paragraph of section Atomic Structure and Function as follows: atomic number (Z) = number of protons mass number (A) = number of protons + number of neutrons A - Z = number of neutrons	Туро
Chapter 2.3: Atoms, Molecules, and Ions, Section: Atomic Structure and Symbolism, End of Chapter Exercises The solution guide incorrect uses (1+x) when it most likely means (1-x); though the answers provided are fine.	Revise "1 + x" to "1 - x" in the solution of exercise	
Again, the problem is in the	25.	Туро

Solutions Guide - not textbook.		
Chapter 2.3: Atoms, Molecules, and Ions; Section 2.3: Atomic Structure and Symbolism; Example 2.3 "atom of platinum" should be "ion of platinum."	Revise the Check Your Learning in Example 2.3 Composition of an Atom as follows: "An ion of platinum has a mass number of 195 and contains 74 electrons. How many protons and neutrons does it contain, and what is its charge?" (Previous: An atom of platinum)	Туро
Chapter 2.5: Atoms, Molecules, and Ions, Section: The Periodic Table In the paragraph above Figure 3, the second-to-last sentence currently reads "Hydrogen is a unique, nonmetallic element with properties similar to both group 1A and group 7A elements." However, I think those group labels are from the old US system, no longer used in this text book. The old 1A is now 1, and the old 7A is now 17. Therefore, the last part of the second-to- last sentence should be changed to "properties similar to both group 1 and group 17 elements."	Revise the references to "group 1A" and "group 7A" to "group 1" and "group 17" respectively.	Minor
Chapter 2.6: Atoms, Molecules, and Ions; Section: 2.6 Molecular and Ionic Compounds; Subsection: Ionic Compounds Replace the phrase, "relative numbers of its constituent cations," with "relative numbers of its constituent ions."	Revise "constituent cations" to "constituent ions" in the last paragraph before section Molecular Compounds as follows: "Because an ionic compound Instead, ionic compounds must be symbolized by a formula indicating the relative numbers of its constituent ions."	Туро
Chapter 2.6: Atoms, Molecules, and Ions; Section: 2.6 Molecular and Ionic Compounds; Subsection: Molecular Compounds; Example 2.12. The answer to part (d) of	Revise "group 1A" to "group 1" in the solution to Example 2.12 Predicting the Type of Bonding in Compounds part (d) as follows: (d) Lithium (group 1) is a metal, and carbonate is a polyatomic ion; Li2CO3 is predicted to be ionic.	Туро

Example 2.12 should read,		
"Lithium (group 1)" not		
"Lithium (group 1A)."		
Chapter 2.6: Atoms,		
Molecules, and Ions;		
Section: 2.6 Molecular and		
Ionic Compounds; Summary		
In the summary of section		
2.6: Molecular and Ionic		
Compounds, "negatively		
charge ions" should be		T
"negatively charged ions."		Туро
Chapter 2.7: Atoms,		
Molecules, and Ions,		
Section: Chemical		
Nomenclature, Chemistry in		
Everyday Life: Erin Brokovich		
and Chromium		
Contamination Error is		
found in the Chemistry in		
Everyday Life Box on Erin		
Brockovich in chapter 2. The		
caption for figure 2.32 states		
that "Erin Brockovich found		
that Cr(IV), used by PG&E,		
" The Roman numerals are	Revise "Cr(IV)" to "Cr(VI)" in the Chemistry in	
reversed. It should be Cr(VI).	Everyday Life feature on Erin Brockovich.	Minor
	Everyday Life Teature off Erin Brockovich.	IVIIIIOI
Chapter 2.7: Atoms,		
Molecules, and Ions,		
Section: Chemical		
Nomenclature, Section		
Summary The last sentence		
of Key Concepts and		
Summary Chapter 2.7 it says		
"Oxyacids are named by		
changing the ending of the		
anion to –ic, and adding		
"acid;" H2CO3 is carbonic		
acid." I might add "or -ous"		
after -ic. So it would read		
Oxyacids are named by		
changing the ending of the	Revise the last sentence of the summary as	
anion to –ic or -ous, and	follows: "Oxyacids are named by changing the	
adding "acid;" H2CO3 is	ending of the anion (–ate to –ic, and –ite to –ous)	
carbonic acid.		Minor
Chapter 2.7: Atoms,	and adding "acid;" Revise "Cr4+" to "Cr3+" in the solution to	Туро

Molecules, and Ions; Section: 2.7 Chemical Nomenclature; Subsection: Compounds Containing a Metal Ion with a Variable Charge; Example 2.13. Cr^4+ should be Cr^3+ in the solution to Example 2.13. Chapter 2.7: Atoms,	Example 2.13 Naming Ionic Compounds as follows:the positive ions must be Fe3+, Cu2+, Ga3+, Cr3+, and Ti3+.	
Molecultes, and Ions Introduction Section: Chemical Nomenclature In table 2.9 on pg 108 (Names of Some Transition Metal Ionic Compounds), the first entry of the table is 'FeCl3', and the name given in the table is iron(II) chloride. It should be iron(III) chloride, as describe in the paragraph		
preceding the table. Chapter 2.7: Atoms, Molecultes, and Ions Introduction Section: Chemical Nomenclature table 2.9 on page 108 in the orange chemistry book FeCl_3 was given the name iron(II) chloride chloride is a 1- charge, and if there is 3 of them, then the chlorine has a total 3- charge. therefore, Iron must carry a 3 minus charge to balance the compound. and there is only one iron, so that one element must carry the entire 3- charge. so the name of this compound should be iron(III) chloride This is major, the entire curriculum of chemistry is based on understanding nomenclature properly. This		Minor
needs to be corrected asap.		Major
Chapter 3: Composition of Substances and Solutions,	Revise "concentration the" to "concentration of the" in question 60 as follows: 60. If 4.12 L of a	Туро

End of Chapter Exercises In question 60, "concentration the" should be "concentration of the".	0.850 M-H3PO4 solution is be diluted to a volume of 10.00 L, what is the concentration of the resulting solution?	
Chapter 3: Composition of Substances and Solutions; End of Chapter Exercises In Chapter 3, question 25, there is a typo. A1_2C1_6 and A1_2S_3 should be Al_2Cl_6 and Al_2S_3.	Revise the incorrect "1" to "l" in question 25 as follows: Al2Cl6 (not A12Cl6)	Туро
Chapter 3.1: Composition of Substances and Solutions, Section: Formula Mass and the Mole Concept p. 130 says CHCl3 is used to make Teflon. Isn't teflon a polymer made out of CF2=CF2?	Under the heading Formula Mass for Covalent Substances, revise the discussion of chloroform and Teflon as follows: "Consider chloroform (CHCl3), a covalent compound once used as a surgical anesthetic and now primarily used in the production of tetrafluoroethylene, the building block for the "anti-stick" polymer, Teflon."	Major
Chapter 3.1: Composition of Substances and Solutions, Section: Formula Mass and the Mole Concept, End of Chapter Exercises Chapter 3 Problem 25 Answer in the back of the book. The problems asks for greatest mass; however the answer provided is in moles (p.1263 2015; p.1261 2016)	Add the mass values to the solution for exercise 25 as follows: 25. Determine which of the following contains the greatest mass of aluminum: 122 g of AlPO4, 266 g of Al2C16, or 225 g of Al2S3. Answer: AlPO4: 1.000 mol, or 26.98 g Al Al2Cl6: 1.994 mol, or 53.74 g Al Al2S3: 3.00 mol, or 80.94 g Al The Al2S3 sample thus contains the greatest mass of Al.	Туро
Chapter 3.1: Composition of Substances and Solutions; Section 3.1: Formula Mass and the Mole Concept; Subsection: The Mole. In the caption to Figure 3.6, please change "454.9 g of HgI_2 (mercury(II) iodide, formula mass 459.9 amu)" to "454.4 g of HgI_2 (mercury(II) iodide, formula mass 454.4 amu)." The numbers must be the same + error in RFM.	Revise "454.9 g" to "454.4 g" in the caption for the second figure in section The Mole as follows: Clock-wise from the upper left 454.4 g of HgI_2 (mercury(II) iodide, formula mass 454.4 amu).	Туро
Chapter 3.1: Composition of Substances and Solutions; Section 3.1: Formula Mass and the Mole Concept;	Revise "256.6 g" to "256.5 g" in the caption for the second figure in section The Mole as follows: Clock-wise from the upper left 256.5 g of S_8 (sulfur, formula mass 256.5 amu).	Туро

1 .		1
Subsection: The Mole. In the		
caption to Figure 3.6, please		
change, "256.6 g of S_8		
(sulfur, formula mass 256.6		
amu)" to "256.5 g of S 8		
(sulfur, formula mass 256.5		
amu)."		
Chapter 3.1: Composition of		
Substances and Solutions;		
Section 3.1: Formula Mass		
and the Mole Concept;		
Subsection: The Mole.		
Please change the average	Correct the average atomic mass of Cl from	
atomic mass of Cl from	"33.45" to "35.45" in the table below the second	
33.45 to 35.45.	figure in section The Mole.	Туро
Chapter 3.2: Composition of		
Substances and Solutions		
Section: Determining		
Empirical and Molecular		
FormulasThe answer to		
Example 3.13 has an error.		
The subscript for the final		
answer is 6 : (C5H7N)6 =		
C10H14N2 It should be 2:		
(C5H7N)2 = C10H14N2	Fixed.	Critical
Chapter 3.2: Composition of		
Substances and Solutions,		
Section: Determining		
•		
Empirical and Molecular		
Empirical and Molecular Formulas, End of Chapter		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '()		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at the very least requires a few		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at the very least requires a few additional words of		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at the very least requires a few additional words of explanation. I developed film		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at the very least requires a few additional words of explanation. I developed film in the day - and I didn't		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at the very least requires a few additional words of explanation. I developed film in the day - and I didn't readily pick up on what this		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at the very least requires a few additional words of explanation. I developed film in the day - and I didn't readily pick up on what this meant. Many of my students		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at the very least requires a few additional words of explanation. I developed film in the day - and I didn't readily pick up on what this		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at the very least requires a few additional words of explanation. I developed film in the day - and I didn't readily pick up on what this meant. Many of my students		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at the very least requires a few additional words of explanation. I developed film in the day - and I didn't readily pick up on what this meant. Many of my students think that it is a 'typo'.		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at the very least requires a few additional words of explanation. I developed film in the day - and I didn't readily pick up on what this meant. Many of my students think that it is a 'typo'. Maybe: 'the percent	Revise exercise 33 part (b) as follows: 33.	
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at the very least requires a few additional words of explanation. I developed film in the day - and I didn't readily pick up on what this meant. Many of my students think that it is a 'typo'. Maybe: 'the percent composition of sodium		
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at the very least requires a few additional words of explanation. I developed film in the day - and I didn't readily pick up on what this meant. Many of my students think that it is a 'typo'. Maybe: 'the percent composition of sodium thiosulfate' Not really a typo	Revise exercise 33 part (b) as follows: 33. Calculate the following to four significant figures:	Unspecifie
Empirical and Molecular Formulas, End of Chapter Exercises p.167 Problem 33b The phrase: '() photographic "hypo" ' is perhaps not the best - or at the very least requires a few additional words of explanation. I developed film in the day - and I didn't readily pick up on what this meant. Many of my students think that it is a 'typo'. Maybe: 'the percent composition of sodium thiosulfate' Not really a typo - but I've seen this cause a	Revise exercise 33 part (b) as follows: 33.	Unspecifie d

are the snapchat generation.		
Chapter 3.2: Composition of Substances and Solutions; Section 3.2: Determining Empirical and Molecular Formulas; Subsection: Derivation of Molecular Formulas. In Example 3.13 Determination of the Molecular Formula for Nicotine, include the calculations of molar ratios.	Include the calculations for the mole rations in Example 3.13 Determination of the Molecular Formula for Nicotine as follows: 6.163 mol C/1.233 mol N = 5 8.624 mol H/1.233 mol N = 7 1.233 mol N/1.233 mol N = 1	Туро
Chapter 3.2: Composition of Substances and Solutions; Section 3.2: Determining Empirical and Molecular Formulas; Subsection: Derivation of Molecular Formulas. In the solution to	In the solution to example 3.13 Determination of the Molecular Formula for Nicotine, revise "C5H7N6" to "C5H7N2".	Туро
Chapter 3.3: Composition of Substances and Solutions, Section: Molarity, Example 3.16 On page 152, Example 3.16 indicates that the chemical formula for vinegar is CH2CO2H. It is not. The chemical formula for vinegar is HC2H3O2, commonly written as CH3COOH. Nobody writes the chemical formula 'CH2CO2H', or 'CH3CO2H' incorporating the correction. The molar mass of the compound is given correctly as 60.052 g/mol so no change is needed in the math.	Revise the formula for vinegar given in Example 3.16 Calculating Molar Concentrations from the Mass of Solute to "CH3CO2H".	Туро
Chapter 3.3: Composition of Substances and Solutions, Section: Molarity, Example: Calculating Molar Concentrations from the Mass of Solute Page 154,	In the solution to Example 3.16 Calculating Molar Concentrations from the Mass of Solute, revise the formula for acetic acid from "CH2CO2H" to "CH3CO2H".	Туро

		I
example 3.16 Acetic acid's		
formula is written		
incorrectly in the worked		
out solution. "CH2CO2H" is		
listed 3 times in the formula		
and it should be "CH3CO2H".		
Chapter 3.3: Composition of		
Substances and Solutions;		
Section 3.3: Molarity;		
Subsection: Dilution of		
Solutions; Example 3.20. In		
the solution to Example		
3.20, change the phrase,	In the solution to Example 3.20 Volume of a	
"four times the original	Diluted Solution, revise "four times the original	
concentrations," to "four	concentrations," to "four times the original	
-	volume."	Tunc
times the original volume."	volume.	Туро
Chapter 4: Stoichiometry of		
Chemical Reactions, End of		
Chapter Exercises Chapter 4,		
problem 71: The solution is		
H3PO4 is the limiting		
reactant, not Cr. In the		
solution manual (for the		
instructor) I see why there is		
a mistake: Openstax used		
0.50 mol Cr, not 0.50		
GRAMS in their calculation,		
then compared that to 0.75	Revise exercise 71 as follows: 71. Outline the	
mol H3PO4, not 0.75	steps needed to determine the limiting reactant	
GRAMS. H3PO4 is the	when 0.50 mol of Cr and 0.75 mol of H3PO4 react	
limiting reactant	according to the following chemical equation.	Туро
Chapter 4: Stoichiometry of		
Chemical Reactions, End of		
Chapter Exercises Chapter 4,		
problem 81. The solution to		
this problem is wrong. The		
solution is 6.13 x 10^-3 M Cl-		
, not 9.6 x 10^-3 M Cl In the		
instructor's manual, I can		
see the source of the error.	Revise exercise 81 as follows: 81 What is the	
** Openstax used 8.25 x 10-	Cl- concentration in a 0.25-mL sample of normal	
4 M in their calculation, not	serum that requires 1.46 mL of 8.25×10^{-4} M	
5.25 x 10-4 M	Hg(NO3)2(aq) to reach the end point?	Minor
Chapter 4: Stoichiometry of	Insert a "+" between Cl^-(aq) and Ag^+(aq) in	
Chemical Reactions, End of	question 12 part ii, as follows: ii. Na+(aq) + Cl-(aq)	_
Chapter Exercises For	+ Ag+(aq) + NO3-(aq)> AgCl(s) + Na+(aq) + NO3-	Туро

		1
equation ii in question 12 of chapter 4, please insert a +	(aq)	
between Cl^-(aq) and		
Ag^+(aq).		
Chapter 4: Stoichiometry of		
Chemical Reactions, End of		
Chapter Exercises In		
question 49 of chapter 4,	Replace the phrase "from ores as" with "from	
replace the phrase "from	ores such as" in question 4, as follows: 4. Silver is	
ores as" with "from ores	often extracted from ores such as K[Ag(CN)2]	-
such as."	and	Туро
Chapter 4: Stoichiometry of		
Chemical Reactions, End of		
Chapter Exercises Problem		
11, reaction a), revise "BaC2O2(s)" to "BaC2O4(s)"		
Problem 12, revise "Use the		
following equations to		
answer the next five		
questions" to "Use the		
following five chemical	Revise the instructions for exercises 12-15 as	
equations to answer the	follows: "Use the following equations to answer	
next four questions"	the next four questions:"	Minor
Chapter 4: Stoichiometry of		
Chemical Reactions, End of		
Chapter Exercises, 3 Back of		
the book answer has a small		
typo: page 1262 of the 2016 ed, Chapter 4 Problem 3 F		
Reads: "(NH4)2Cr52O7(s)"		
Ought to read:	In the solution to part f of exercise 3, revise the	
"(NH4)2Cr2O7(s)" There's an	left half of the equation as follows:	
extra '5'	"(NH4)2Cr2O7"	Туро
Chapter 4: Stoichiometry of		
Chemical Reactions; Answer		
Key, Question 71 In the		
answer for question 71 in		
chapter 4, the formula	Revise the formula "H2PO4" to "H3PO4" in the	
H_2PO_4 should be	answer to question 71, as follows: 71. The	Turne
H_3PO_4.	conversion needed is mol Cr> mol H3PO4	Туро
Chapter 4: Stoichiometry of		
Chemical Reactions; End of	Replace the phrase, "is be required to titrate,"	
Chapter Exercises In question 78 of chapter 4,	with "is required to titrate" in question 78 as follows: 78. What volume of 0.0105-M HBr	
replace the phrase, "is be	solution is required to titrate 125 mL of a 0.0100-	
required to titrate," with "is	M Ca(OH)2 solution?	Туро
	1	

required to titrate."		
Chapter 4: Stoichiometry of Chemical Reactions; End of Chapter Exercises In question 86 of chapter 4, the phrase, "in hot water of 60 °C is 164 g L" should be, "in hot water of 60 °C is 164 g/L."	Revise the phrase "in hot water of 60 °C is 164 g L" to "in hot water of 60 °C is 164 g/L" in question 86, as follows: 86The solubility of NaHCO3 in hot water of 60 degrees C is 164 g/L	Туро
Chapter 4: Stoichiometry of Chemical Reactions; End of Chapter Exercises The question, "What are the empirical and molecular formulas of the compound." should have a question mark instead of a period.	Add a question mark at the end of question 85.	Туро
Chapter 4.1: Stoichiometry of Chemical Reactions, Section: Writing and Balancing Chemical Equations, End of Chapter Exercises Chapter 4 Problem 7c page 1262: The answer given in the back of the book is: Al2O3(GAS) it should be a (SOLID).	Revise the answer given for part (d) of exercise 7 as follows: 7. Colorful fireworks often involve the decomposition of barium nitrate and potassium	Туро
Chapter 4.1: Stoichiometry of Chemical Reactions, Section: Writing and Balancing Chemical Equations, End of Chapter Exercises End of chapter exercises - Chapter 4 # 11 part a product listed as BaC2O2 (s); should be BaC2O4 (s)	Revise the formula given in part (a) of exercise 11 as follows: 11. From the balanced molecular equations, write the complete ionic and net ionic equations for the following: (a) K2C2O4(aq) + Ba(OH)2(aq)> 2KOH(aq) + BaC2O4(s)	Туро
Chapter 4.1: Stoichiometry of Chemical Reactions, Section: Writing and Balancing Chemical Equations, End of Chapter Exercises p. 1262 Chapter 4 Problem 3 f The (NH4)2Cr52O7 ought to read (NH4)2Cr2O7. I think that	Revise "(NH4)2Cr52O7" to "(NH4)2Cr2O7" in the soltuion to exercise 3 part (f).	Туро

the extra 5 is a simple typo		
Chapter 4.1: Stoichiometry of Chemical Reactions; Section 4.1: Writing and Balancing Chemical Equations; Subsection: Balancing Equations. In the table that appears just before Example 4.1, 2 times 2 should equal 4 not 2.	In the table that appears just before Example 4.1 Balancing Chemical Equations, revise "2 x 2 = 2" to "2 x 2 = 4".	Туро
Chapter 4.1: Stoichiometry of Chemical Reactions; Section: Writing and Balancing Chemical Equations, first figure In the caption for Figure 4.2, change "carbon dioxide in water" to "carbon dioxide and water."	Revise "carbon dioxide in water" to "carbon dioxide and water" in the caption for the first figure in section 4.1 Writing and Balancing Chemical Equations as follows: The reaction between methane and oxygen to yield carbon dioxide and water (shown at bottom) may be represented by a chemical equation using formulas (top).	Туро
Chapter 4.2: Stoichiometry of Chemical Reactions Section: Classifying Chemical Reactions In Table 4.1, the ion 'chromate' is given the formula CrO32-, rather than CrO42	Fixed.	Minor
Chapter 4.2: Stoichiometry of Chemical Reactions; Section 4.2: Classifying Chemical Reactions; Subsection: Balancing Redox Reactions via the Half- Reaction Method; Example 4.7 In Step 4 for the Solution to Example 4.7, the last equation should read, "Cr_2O_7^2- + 14H^+ yields 2Cr^3+ + 7H_2O."	Add "14H+" to the last equation in the solution to Example 4.7 Balancing Redox Reactions in Acidic Solution as follows: Cr2O72- + 14H+> 2Cr3+ + 7H2O	Туро
Chapter 4.2: Stoichiometry of Chemical Reactions; Section 4.2: Classifying Chemical Reactions; Subsection: Oxidation- Reduction Reactions; Example 4.5 In the solution to Example 4.5, The	Revise "(3 x -1)" to "(3 x -2)" in the solution to Example 4.5 Assigning Oxidation Numbers part (b) as follows: (b) charge on SO32- = -2 = (3 x -2) + (1 x X)	Туро

equation, "charge on		
$SO_3^2 - = -2 = (3 \text{ times } -1) + (1 \text{ times } x)'' \text{ should read,}$		
"charge on SO $3^2 - = -2 = (3)$		
times -2) + (1 times x)."		
Chapter 4.2: Stoichiometry		
of Chemical Reactions;		
Section 4.2: Classifying		
Chemical Reactions;		
Subsection: Precipitation		
Reactions and Solubility		
Rules; Table 4.1 In Table 4.1,	Revise the charge for the sulfate ion in Table 4.1	
the charge for the sulfate	Solubilities of Common Ionic Compounds in	
ion should 2- not just	Water from " - " to "2-"	Туро
Chapter 4.4: Stoichiometry		
of Chemical Reactions,		
Section: Reaction Yields, End		
of Chapter Exercises Chapter 4 problem 69: In the product		
side, ether is missing its		
Oxygen. Reads - 2C2H5OH +	Revise the equation given in exercise 69 as	
H2SO4> (C2H5)2 +	follows: 69. Outline the steps needed to solve the	
H2SO4*H2O (C2H2)2 should	following problem, then do the calculations	
be (C2H5)2	2C2H5OH + H2SO4> (C2H5)2O + H2SO4 x H2O	Minor
Chapter 4.4: Stoichiometry		
of Chemical Reactions,		
Section: Reaction Yields,		
Example 4.16 Combustion		
Analysis Avogadro's number	Revise the flowchart in Example 4.16 Combustion	
on flowcart should be	Analysis to read "stoichiometric factor" instead of	
"stoichiometric factor"	"Avogadro's number".	Туро
Chapter 4.4: Stoichiometry		
of Chemical Reactions,		
Section: Reaction Yields, Example 4.16 Combustion		
Analysis misleading to have	In the solution to Example 4.16 Combustion	
y as the subscript in the	Analysis, change "y" to "y/2" in front of H2O, as	
formula CxHy(s) and also as	follows: CxHy(s) + excess O2(g)> xCO2 +	
the coefficient for H2O	(y/2)H2O(g)	Туро
Chapter 4.4: Stoichiometry		
of Chemical Reactions;		
Section 4.4: Reaction Yields;	Revise "28.09 g N2" to "28.02 g N2" in the second	
Subsection: Limiting	equation in the solution to Example 4.12	
Reactant; Example 4.12 In	Identifying the Limiting Reactant as follows: mol	
the solution to Example	N2 = 1.50 g N2 x (1 mol N2/28.02 g N2) = 0.0535	Trues
4.12, for the equation for	mol N2	Туро

mol N 2, the denominator		
of the fraction should read		
"28.02 g N 2."		
Chapter 4.4: Stoichiometry		
of Chemical Reactions;		
Section 4.4: Reaction Yields;		
,	Revise "the Freon" to "the gas Freon" in the	
Subsection: Limiting	5	
Reactant; Example 4.13 In the Check Your Learning for	Check Your Learning question for Example 4.13 Calculation of Percent Yield as follows: What is	
Example 4.13 change the	the percent yield of a reaction that produces 12.5	
phrase, "of the Freon" to "of	g of the gas Freon CF2Cl2 from 32.9 g of CCl4 and	
the Freon gas."	excess HF?	Tuno
		Туро
Chapter 4.5: Stoichiometry		
of Chemical Reactions,		
Section: Quantitative		
Chemical Analysis, End of		
Chapter Exercises Ironically -		
the newer edition of the		
Chemistry book (orange)		
contains an error; whereas,		
the older edition does not.		
On p.221 of the latest		
edition, chapter 4 problem		
81: The concentration given		
"() 5.25 × 10?4 M		
Hg(NO3)2(aq) to reach the		
end point?" Ought to read "		
() 8.25 ()" in order to		
yield the computed value found in the back of the		
book. In the earlier edition, this was correct.		
Furthermore, in the		
solutions guide - the		
problem interchanges		
between these two		
numerical values (photo		
attached.)	In exercise 81, revise "5.25" to "8.25".	Minor
Chapter 4.5: Stoichiometry		
of Chemical Reactions,		
Section: Quantitative		
Chemical Analysis, End of		
Chapter Exercises p. 222		
Chapter 4 Problem 83. The		
question talks about GaBr2 -	In exercise 92, revise "CaDra" to "CaDra"	
however, it ought to read GaBr3.	In exercise 83, revise "GaBr2" to "GaBr3"	Tuno
Uadi 5.	throughout.	Туро

Chapter 4.5: Stoichiometry of Chemical Reactions, Section: Quantitative Chemical Analysis, Example 4.14 Perhaps the formula for Potassium permanganate should read KMnO4 instead of MnO4	Revise the Check Your Learning for Example 4.14 Titration Analysis as follows: "A 20.00-mL sample of aqueous oxalic acid, H2C2O4, was titrated with a 0.09113-M solution of potassium permanganate, KMnO4."	Minor
Chapter 4.5: Stoichiometry of Chemical Reactions; Section 4.5: Quantitative Chemical Analysis; Subsection: Titration; Example 4.14 In the Solution to Example 4.14, replace the phrase, "since the amounts of reactants are provided and requested are" with "since the amounts of reactants provided and requested are."	Revise "since the amounts of reactants are provided and requested are" to "since the amounts of reactants provided and requested are" in the Solution to Example 4.14 Titration Analysis as follows: As for all reaction stoichiometry calculations since the amounts of reactants provided and requested are expressed as solution concentrations.	Туро
Chapter 5.1: Thermochemistry Section: Energy Basics Example 5.1, in the first equation, revise "Tfina" to "Tfinal"	Fixed	Туро
Chapter 5.1: Thermochemistry Section: Energy Basics In the equation for the heat, q, revise "(specific hea)" to "(specific heat)"	Fixed	Туро
Chapter 5.1: Thermochemistry, Section: Energy Basics, Example 5.1 Chapter 5, worked example 5.1 - computing the heat gain of water. The starting temperature in the problem is 21 deg C; however, in the solution - it is 20 deg C.	In the solution to Example 5.1 Measuring Heat, revise "20 degrees C" to "21 degrees C".	Туро
Chapter 5.2: Thermochemistry, Section: Calorimetry, Example 5.3 On page 239 of Chemistry Stax book. On the Check your	Revise the solution to the Check Your Learning in Example 5.3 Heat Transfer between Substances at Different Temperatures as follows: Answer The final temperature (reached by both copper and water) is 38.7 C.	Minor

learning problem number 2.		
The answer is for the final temp is incorrect.		
Chapter 5.2: Thermochemistry, Section: Calorimetry, Example 5.5 (p. 248 in hardback, Example 5.5). "When 50.0 mL of 0.10 M HCl(aq) and 50.0 mL of 0.10 M NaOH(aq)," should both be 1.0 M. The problem ends up with -2.89 x 10^3 J for 0.0050 moles of reactant, giving -578 kJ/mol which is 10 x too big. Using the 1.0 M solutions gives 0.0500 moles of each reactant, giving -57.8 kJ/mol which is expected for this reaction. These numbers, 2.9 kJ and 0.0500 mol are used for the same reaction in problem 5.8.	Revise the first sentence of Example 5.5 Heat Produced by an Exothermic Reaction as follows: "When 50.0 mL of 1.00 M HCl(aq) and 50.0 mL of 1.00 M NaOH(aq), both at 22.0 degrees C"	Major
Chapter 5.3: Thermochemistry, Section: Enthalpy, End of Chapter Exercises Chapter 5 End of Chapter Problem 49:: The question asks for the enthalpy of combustion. The answer in the back of the book is given as a positive value. However, per the convention of the book - this value ought to be negative. +++ https://docs.google.com/spr eadsheets/d/1vj9AmOImFJ9I bVM5YrSxxjqyYt71Er26YQY4 J0sX7Rk/edit?usp=sharing	Revise the answer to exercise 49 to be negative, not positive.	Minor
Chapter 5.3: Thermochemistry, Section: Enthalpy, End of Chapter Exercises Chapter 5 Problem 66 The given eqn has a typo. Should read "CoO" but is instead written as "Co". The	Revise the second reaction given in exercise 66 as follows: 66. Calculate delta H degrees 298 for the process Co3O4(s)> 3Co(s) + 2O2(g) from the following information: 3CoO(s) +12O2(g)> Co3O4(s)	Туро

solution guide has it correct.		
+++		
Chapter 5.3:		
Thermochemistry, Section:		
Enthalpy, End of Chapter		
Exercises Chapter 5 Problem		
69 d Problem stem read		
"Cs2" and ought read "CS2".		
Basically the sulfur needs to		-
be in caps.	In exercise 69, capitalize "S" for sulfur.	Туро
Chapter 5.3:		
Thermochemistry, Section:		
Enthalpy, End of Chapter		
Exercises In the		
Thermochemistry chapter in		
the section on enthalpy		
there is a very good exercise		
that needs to have the		
reaction balanced. If you		
want the students to		
balance this reaction on		
their own, it would be good		
to point out they should		
check that the reaction is		
balanced. The exercise is		
pasted below. In the early		
days of automobiles,		
illumination at night was		
provided by burning		
acetylene, C2H2. Though no		
longer used as auto		
headlamps, acetylene is still		
used as a source of light by		
some cave explorers. The		
acetylene is (was) prepared		
in the lamp by the reaction of water with calcium		
carbide, CaC2:		
CaC2(s)+H2O(l)?Ca(OH)2(s)+	Revise exercise 77 to add a "2" in front of "H2O"	
C2H2(g). Calculate the	as follows: 77. In the early days of automobiles,	
standard enthalpy of the	illumination at night was provided by burning	
reaction. The ?H?f of CaC2 is	acetylene, C2H2. Though no longer used as auto	
?15.14 kcal/mol. The H2O in	headlamps, acetylene is still used as a source of	
the reaction must be 2 H2O.	light by some cave explorers. The acetylene is	
This of course makes a big	(was) prepared in the lamp by the reaction of	
difference when doing ?H?f	water with calcium carbide, CaC2: CaC2(s) +	
product - ?H?f reactant.	2H2O(I) -> Ca(OH)2(s) + C2H2(g).	Туро
r inter interestation		15 4

Chapter 5.3:		
Thermochemistry, Section:		
Enthalpy, Example 5.15 p.		
261 e.g. 5.15 in the Alt		
Solution using the data from		
Appendix G. The oxygen in		
the third chemical reaction	Revise the third equation given in the solution to	
is not balanced. A 3 is	Example 5.15 Using Hess's Law as follows:	
needed as it's coeffienent	Solution: Supporting Why the General Equation Is	_
(sp).	Valid H2(g) + N2(g) + 3O2(g)> 2HNO3(aq)	Туро
Chapter 5.3:		
Thermochemistry, Section:		
Enthalpy, Example 5.15	Revise the third equation in Example 5.15 Using	
Using Hess's Law Example	Hess's Law, Solution: Supporting Why the	
5.14 and 5.15 in OpenStax-	General Equation is Valid, as follows: H2(g) +	
see attached files	N2(g) + 3O2(g)> 2HNO3 (aq)	Туро
Chapter 6: Electronic		
Structure and Periodic		
Properties of Elements, End		
of Chapter Exercises, 53 In		
the answer to Problem 6.53,		
parts d) and e), revise "5s2"	Revise the solution to exercise 53 parts d and e as	
to "5s" "5p4" to "5p" "4d5"	follows: (d) "5s2" to "5s" "5p4" to "5p" (e) "4d5"	
to "4d"	to "4d"	Minor
Chapter 6: Electronic		
Structure and Periodic		
Properties of Elements; End	Revise "Question 5" to "the previous question" as	
of Chapter Exercises The	follows: 36. Which of the subshells described in	
phrase, " described in	the previous question contain degenerate	
Question 5," should be, "	orbitals? How many degenerate orbitals are in	
.described in Question 35."	each?	Туро
		/ * *
Chapter 6.1: Electronic Structure and Periodic		
Properties of Elements,		
Section: Electromagnetic Energy, Example 6.3 Section		
6.1, Check Yourself Problem		
6.3 Calculate the threshold		
energy in kJ/mol of electrons in aluminum, given that the		
lowest frequency photon for		
which the photoelectric effect is observed is 9.87 ×	Povise the solution of the Check Your Learning	
1014 Hz. Answer: 3.94 × 105	Revise the solution of the Check Your Learning question in Example 6.3 Photoelectric Effect from	
kJ/mol should be 394 KJ/mol		Turne
1877 HOLSHUUUU DE 334 NJ/1101	1"3 9/1 x 105 k1/mol" to "3 9/1 k1/mol"	
Chapter 6.1: Electronic	"3.94 × 105 kJ/mol" to "3.94 kJ/mol". Revise the solution given for exercise 9 in the	Туро Туро

Structure and Periodic Properties of Elements, Section: Electromagnetic Energy, Solution Guide Solutions guide has a typo. p.2 of 5 for Chapter 6 Problem 9 a:: The freq used for the calculation is 7.9X10- 7 sec; whereas it ought be be 3.45X1014. I think that this was a result of copy- paste from number 8.	solution guide to shown a frequency of "3.45 x 10^14" rather than "7.9 x 10^-7".	
Chapter 6.1: Electronic Structure and Periodic Properties of Elements; Section 6.1: Electromagnetic Energy; Subsection: Line Spectra The caption to Figure 6.12 should read, "This sign shows," not "This sign show."		Туро
Chapter 6.1: Electronic Structure and Periodic Properties of Elements; Section 6.1: Electromagnetic Energy; Subsection: Line Spectra The phrase, " .containing hydrogen gas at low pressure, the H_2 molecules are broken apart into separate H atoms, we see a blue-pink colour" should read, "containing hydrogen gas at low pressure, the H2 molecules are broken apart into separate H atoms and we see a blue-pink colour."	Revise the third paragraph of Section Line Spectra to add the missing "and" as follows: For example the H2 molecules are broken apart into separate H atoms, and we see a blue-pink color.	Туро
Chapter 6.1: Electronic Structure and Periodic Properties of Elements; Section 6.1: Electromagnetic Energy; Subsection: The Photoelectric Effect; Example 6.3 In Example 6.3, the question should direct students to change the	Revise the phrase "changed the underlined word" with "change the italicized word" in Example 6.3 Photoelectric Effect as follows: Identify which of the following statements are false and, where necessary, change the italicized word or phrase to make them true, consistent with Einstein's explanation of the photoelectric effect.	Туро

italicized word(s), not the underlined words.		
Chapter 6.3: Electronic Structure and Periodic Properties of Elements Section: Development of Quantum Theory Problem 36, revise "described in Question 5 contain" to "described in Question 35 contain"	Fixed	Minor
Chapter 6.3: Electronic Structure and Periodic Properties of Elements Section: Development of Quantum Theory Problem 38, revise "described in Question 7 contain" to "described in Question 37 contain"	Fixed	Minor
Chapter 6.3: Electronic Structure and Periodic Properties of Elements The word principal in the phrase "principal quantum number" is misspelled in a few locations in chapter 6. The adjective should be "principal" and not "principle," on as on page 298.	Revise all instances of "principle quantum number" to "principal quantum number".	Minor
Chapter 6.3: Electronic Structure and Periodic Properties of Elements; Section 6.3: Development of Quantum Theory; Question 38 The phrase, " described in Question 7," should be, ". described in Question 37."	Revise "Question 7" to "the previous question" as follows: 38. Which of the subshells described in	Туро
Chapter 6.3: Electronic Structure and Periodic Properties of Elements; Section 6.3: Development of Quantum Theory; Subsection: The Pauli Exclusions Principle;	Revise the phrase "1 orbitals labeled 5s" to "1 orbitals labeled 5s" in Example 6.8 Maximum Number of Electrons.	Туро

Example 6.8 The phrase, "1 orbitals labeled 5s," should		
be, "1 orbitals labeled 5s."		
Chapter 6.3: Electronic Structure and Periodic Properties of Elements; Section 6.3: Development of Quantum Theory; Subsection: Understanding Quantum Theory of Electrons in Atoms In the equation on pg. 316, "E_fina" should be "E_final."	Revise "E_fina" to "E_final" in the equation in Section Behavior in the Microscopic World, as follows: deltaE = E_final - E_initial	Туро
Chapter 6.3: Electronic Structure and Periodic Properties of Elements; Section 6.3: Development of Quantum Theory; Subsection: Understanding Quantum Theory of Electrons in Atoms The phrase, "In the case of a hydrogen atom or a one electron ion (such as He^+, Li^+ and," should read, "In the case of a hydrogen atom or a one electron ion (such as He^+, Li^2+ and ."	Revise the phrase "In the case of a hydrogen atom or a one electron ion (such as He+, Li+ and" to "In the case of a hydrogen atom or a one electron ion (such as He+, Li2+ and".	Туро
Chapter 6.3: Electronic Structure and Periodic Properties of Elements; Section 6.3: Development of Quantum Theory; Subsection: Understanding Quantum Theory of Electrons in Atoms The phrase, "the energy of an electron in atom," should be, "the energy of an electron in an atom." Chapter 6.4: Electronic	Revise the second paragraph in Section Understanding Quantum Theory of Electrons in Atoms to add the missing "an" as follows: Generally speaking, the energy of an electron in an atom is greater for greater values of n. Revise the caption of Figure 6.11 as follows:	Туро
Structure and Periodic Properties of Elements, Section: Electromagnetic Energy, Figure 6.11 Caption	"Photons with low frequencies do not have enough energy to cause electrons to be ejected via the photoelectric effect. For any frequency of light above the threshold frequency, the kinetic	Minor

for figure re. photoelectric effect erroneously states electron kinetic energies are "proportional to" photon energies, recommend revision as shown below to correct this error and an presently: "the kinetic energy of ejected electron will be proportional to the energy of the incoming photon" change to: " the kinetic energy of an ejected electron will increase	energy of an ejected electron will increase linearly with the energy of the incoming photon."	
linearly with the energy of the incoming photon"		
Chapter 6.4: Electronic Structure and Periodic Properties of Elements; Section 6.4: Electronic Structure of Atoms (Electron Configurations); Subsection: Electron Configurations and the Periodic Table The phrase, " are most easily		
lost or shared than the core electrons," should be, " are more easily lost or	Revise the phrase "are most easily lost or shared than the core electrons," to "are more easily lost or shared than the core electrons" in	
shared than the core	the first paragraph of Section Orbital Energies	Turner
electrons." Chapter 6.5: Electronic Structure and Periodic Properties of Elements, Section: Periodic Variations in Element Properties, End of Chapter Exercises In the solutions guide for Chapter 2 problem 49 b; the answer given incorrectly lists the carbonate and ought to be the sulfate. See attached pic.	and Atomic Structure. In the Solution Manual, revise the solution given for exercise 49 part (b) as follows: (b) (NH4)2SO4	Туро
Chapter 7: Chemical Bonding and Molecular Geometry; Answer key; End of Chapter Exercises The solution for		
part (a) to question 55 in chapter 7: Chemical Bonding	Add the text "(a)" to the first solution given for question 55.	Туро

		I
and Molecular Geometry is		
missing.		
Chapter 7: Chemical Bonding		
and Molecular Geometry;		
End of Chapter Exercises		
Choice (b) in Question 32 in		
Chapter 7 should read,		
"ICI_4^"	Revise "IC4-" to "ICl4-" in question 32 part (b).	Туро
Chapter 7: Chemical Bonding		
and Molecular Geometry;		
End of Chapter Exercises The		
question, "Which of the		
molecules and ions in		
Exercise 7.93 contain polar		
bonds?" should read,		
"Which of these molecules		
and ions contain polar		
bonds?" Since the reference	Delete the reference to Exercise 7.93 in question	
to 7.93 is irrelevant.	98.	Tuno
	58.	Туро
Chapter 7.1: Chemical		
Bonding and Molecular		
Geometry, Section: Ionic		
Bonding, Figure 7.3 figure		
7.3, the labeling is wrong,		
larger spheres are labeled	In part b of Figure 7.3, reverse the labels Na+ and	
Na+, smaller spheres Cl-	CI	Туро
Chapter 7.3: Chemical		
Bonding and Molecular		
Geometry; Section 7.3:		
Lewis Symbols and		
Structures; Subsection: Odd-		
electron Molecules The		
phrase, "we follow the same		
six steps we would for,"		
should be, "we follow the	Revise the phrase "we follow the same six steps"	
same five steps we would	to "we follow the same five steps" in the second	
for."	paragraph of Section Odd-electron Molecules.	Туро
Chapter 7.5: Chemical		
Bonding and Molecular		
Geometry, Section:		
Strengths of Ionic and		
Covalent Bonds, Table 7.4 I		
don't know if I am just		
misunderstanding, or if this		
is an actual error - Table 7.4	Revise Table 7.4 to show the enthalpy of	
on page 367 of the textbook	formation for cesium fluoride.	Minor
on page 507 of the textbook		

is supposed to show the		
enthalpy of formation for		
cesium chloride, but there is		
information in the table for		
the formation of sodium		
chloride.		
Chapter 7.6: Chemical		
Bonding and Molecular		
Geometry, Section:		
1.		
Molecular Structure and		
Polarity On page 379 of the		
OpenStax chemistry text, the		
diagram for Chloromethane,		
as well as the corresponding		
wording in the text, are		
incorrect. The dipole		
moment arrows for the		
bonds are all pointing in the		
wrong direction. They		
should be pointing from the		
more positive element to		
the more negative element.		
The wording should state	In the sentence before the VSEPR model of	
"All of the dipoles have an	Chloromethane, revise "downward component"	
'UPWARD' component"	to "upward component".	Туро
Chapter 7.6: Chemical		
Bonding and Molecular		
Geometry, Section:		
Molecular Structure and		
Polarity, Example 7.16		
Example 7.16, revise The		
Lewis structure in the		
solution has a minor error.		
One of the oxygens is		
missing a couple of lone	Add a pair of electrons to the Oxygen in the first	
pairs of electrons.	figure of the solution to Example 7.16.	Minor
	Revise the paragraph that follows the figure	
Chapter 7.6: Chemical	labeled "bond movements" and "overall dipole	
Bonding and Molecular	moment" as follows: The C-O bond is	
Geometry; Section 7.6:	considerably polar. Although C and S have very	
Molecular Structure and	similar electronegativity values, S is slightly more	
Polarity; Subsection:	electronegative than C, and so the C-S bond is	
Molecular Polarity and	just slightly polar. Because oxygen is more	
Dipole Moment On page	electronegative than sulfur, the oxygen end of	
397, there is no C-S dipole.	the molecule is the negative end. (Previous:	
Change the diagram which	Although the C–O bond is polar, C and S have the	
shows a dipole.	same electronegativity values as shown in Figure	Туро
		71 ·

	7.6, so there is no C–S dipole. Thus, the two bonds do not have of the same bond dipole moment, and the bond moments do not cancel. Because oxygen is more electronegative than sulfur, the oxygen end of the molecule is the negative end.)	
Chapter 7.6: Chemical Bonding and Molecular Geometry; Section 7.6: Molecular Structure and Polarity; Subsection: Molecular Polarity and Dipole Moment The phrase, "Thus, the two bonds do not have of the same bond dipole moment and," should be, "Thus, the two bonds do not have the same bond dipole moment and	Delete "of" in the fifth paragraph of Section VSEPR Theory as follows: Thus, the two bonds do not have the same bond dipole moment	Туро
Chapter 8.1: Advanced Theories of Covalent Bonding, Section: Valence Bond Theory On page 405 of the most recent version of 'Chemistry', there is a mangled sentence, see attached screen shot	Delete the extraneous "in" in the following sentence as shown: "As the Lewis structures suggest, O2 contains a double bond, and N2 contains a triple bond."	Minor
Chapter 8.1: Advanced Theories of Covalent Bonding, Section: Valence Bond Theory, Example 8.1 The formula for Butadiene is listed as C6H6 in example 8.1 on page 417. The correct formula for Butadiene is C4H6.	Revise the formula given for Butadiene in Example 8.1 Counting Sigma and Pi Bonds to "C4H6".	Major
Chapter 8.2: Advanced Theories of Covalent Bonding, Section: Hybrid Atomic Orbitals The description of the orbitals (see Figure legend, in terms of color, in Fig. 8.8 is confusing/wrong. The p- orbital is not 'red', nor are	In Figures 8.8, 8.10, and 8.15, revise the captions to say "yellow" instead of "purple".	Major

the hybrid orbitals 'purple'. I know that we went through various iterations of these colorings, but the figure legends must of course match the figures. The same discrepancy occurs in other figures in this chapter, e.g. Figs. 8.10 and 8.15.		
Chapter 8.2: Advanced Theories of Covalent Bonding, Section: Hybrid Atomic Orbitals, Figure 8.10 Figure 8.10 showing the hybridization of orbitals to form sp2 orbitals. The figure shows the sp2 orbitals arranged 90 degrees from each other, rather than 120 degrees in a plane. This is very confusing for students!	Add a label to Figure 8.10 to mark the 120 degrees between the sp2 orbitals.	Major
Chapter 8.4: Advanced Theories of Covalent Bonding Section: Molecular Orbital Theory The caption reads: "from the valance band to the conduction band." Please correct the spelling.	fixed valance to valence -yingyan	Туро
Chapter 8.4: Advanced Theories of Covalent Bonding, Section: Molecular Orbital Theory, Subsection: Bonding in Diatomic Molecules "When a single p orbital contains a pair of electrons, the act of pairing the electrons raises the energy of the orbital. Thus the 2p orbitals for O, F, and Ne are higher in energy than the 2p orbitals for Li, Be, B, C, and N." The electrons in the 2p orbitals of O, F, and Ne are not higher in energy than those of Li, Be, B, C, and N. This statement is	Revise the paragraph after Figure 8.38 (MO patterns) as follows: "s-p mixing occurs when the s and p orbitals have similar energies. The energy difference between 2s and 2p orbitals in O, F, and Ne is greater than that in Li, Be, B, C, and N. Because of this, O2, F2, and Ne exhibit negligible s-p mixing"	Major

much too overgeneralized and leads to a gross misunderstanding of how to think about atomic energy levels and the consequent effects of combining them. The only case where double occupancy increases the apparent energy is evidenced by the slightly lower IE1 of O compared to that of N. The second ionization energy of O, however, is much greater than that of N, which means that the 2p orbital electrons of O are not all at a higher level. Further, and perhaps more germane is that IE1 of F and Ne are both greater than that of N so this makes the statement quoted above false, as IE1 clearly indicates that the singly occupied 2p orbitals of N are at a higher energy level than the doubly occupied 2p orbitals of F and Ne. The correct explanation for this difference in s and p energy levels is that as effective nuclear charge becomes stronger, there is an increased separation/difference in the energy levels of 2s and 2p electrons. This is the better explanation for the observations of O where even though the double occupancy leads to a higher IE1 as compared to N with its singly occupied 2p orbitals (suggesting double occupancy leads to higher energy), the 2s electrons of O are at a much lower energy level than the 2s

electrons of N, thus there is too big of an energy gap between those electrons for mixing to occur. This energy gap increases for elements to the right of O as their Zeffective also increases. Conversely, the 2s and 2p energy levels of N and all 2nd period elements prior to exhibit decreasingly smaller gaps between 2s and 2p moving to the left across the period just as Zeff decreases.		
Chapter 9: Gases, End of Chapter Exercises, 11 p. 502 Chapter 9 Problem 11. The question stem reads: "() pressure at sea level 29.97 in., ()" Ought to read: "() pressure at sea level 29.97 in. Hg, ()" Basically missing the "Hg"	In exercise 11, revise "29.97 in." to "29.97 in. Hg".	Туро
Chapter 9: Gases, End of Chapter Exercises, 25 Chapter 9 Problem 25 page 504 (2016 ed). Using the figure mentioned in the problem, one cannot (at the given temperature) get the answer that is showing in the back of the book. Either change the temperature to 191K or adjust the volume of the answer.	Revise the solution to exercise 25 as follows: 25.	Туро
Chapter 9: Gases, End of Chapter Exercises, 69 Missing a "K" on page 507 (2016 ed) Chapter 9 Problem 69 A. Reads "875 degree" should read "875 K" (without the degree and	Revise part a of exercise 69 to give temperature	
Kelvin added.) Chapter 9: Gases; Answer Key The answer to question	"875 K". Revise the answer to part (b) of question 105 to use "ideal gas equation" instead of "van der	Minor
105 part (b) in chapter 9	Waals equation" as follows: (b) When real gases	Туро

currently reads, "the ideal gas approximation breaks down and is significantly different from the pressure calculated by the van der Waals equation," but it should read, "the ideal gas approximation breaks down and is significantly different from the pressure calculated by the ideal gas equation"	are at low pressures and high temperatures the ideal gas approximation breaks down and is significantly different from the pressure calculated by the ideal gas equation.	
Chapter 9.1: Gases, Section: Gas Pressure Chemistry text: 1) P464 fig 9.5 - diagram on right has incorrect depiction of "h" submitted via ZenDesk	In Figure 9.5 on manometers, revise the label of h on the rightmost manometer to appear above the black line.	Minor
Chapter 9.2: Gases, Section: Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law Chapter 9 Figure 5 has the wrong units on the vertical axis. They should be psi^-1, not psi	Revise the graph in Figure 9.13 to have units of psi^-1.	Minor
Chapter 9.2: Gases, Section: Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law Chapter 9 Figure 6, graph on right, axes are incorrectly labeled. This is a graph of 1/P vs. V, not Volume vs. Pressure. But there is probably a simpler solution. The graphs in this figure are a duplication of those in Figure 5, and the Figure 5 graphs are much nicer. The text can simply refer to Figure 5.	Revise part (b) of Figure 9.14 showing the relationship between pressure and volume to show the graph of 1/P vs. V.	Major
Chapter 9.2: Gases; Section 9.2: Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law; Subsection: Volume and Pressure: Boyle's Law In Example 9.8, the phrase,	Revise the phrase "Using P1 and V1 as the known values 0.933 atm and 2.40 mL" to "Using P1 and V1 as the known values 13.0 psi and 15.0 mL" in the solution to Example 9.8 Volume of a Gas Sample, as follows: (c) From Boyle's law Using P1 and V1 as the known values 13.0 psi and 15.0 mL, P2 as the pressure at which the volume is	Туро

"Using P_1 and V_1 as the known values 0.933 atm and 2.40 mL, P_2 as the volume at which the pressure is unknown and V_2 as the unknown volume," should read, "Using P_1 and V_1 as the known values 13.0 psi and 15.0 mL, V_2 as the volume at which the pressure is unknown and P_2 as the unknown pressure"	unknown, and V2 as the unknown volume, we have	
Chapter 9.2: Gases; Section 9.2: Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law; Subsection: Volume and Pressure: Boyle's Law In Figure 9.14, the graph of P vs. V is a parabola, but the graph of P vs. V should be a hyperbola.	Revise "parabola" to "hyperbola" in the figure caption for Figure 9.14 on the relationship between pressure and volume.	Туро
Chapter 9.2: Gases; Section 9.2: Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law; Subsection: Volume and Temperature: Charles's Law The phrase, "and as seen with the V-T relationship, this leads to another form of Charles's law," should be, "and as seen with the P-T relationship, this leads to another form of Charles's law."	Revise "V-T relationship" to "P-T relationship" in the paragraph before Example 9.6 Predicting Change in Volume with Temperature as follows: For a confined, constant pressure gas sample, V/T is constant (i.e., the ratio = k), and as seen with the P-T relationship, this leads to another form of Charles's law: V1/T1 = V2/T2.	Туро
Chapter 9.3: Gases Section: Stoichiometry of Gaseous Substances, Mixtures, and Reactions There are several errors in the Student solutions for Chapter 9 of the Chemistry text book. These are some basic problems that students are	Revise the solutions to exercises 37, 57, and 79 in the solution manual.	Major

using as their go to practice. It is important that they are corrected quickly. The errors are in problems #37, #57, #79. Additionally the answer to Check your Learning Example 9.16 is incorrect in the online version, but correct in the paper version. Has the on-line version not been updated? Thanks much.		
Chapter 9.3: Gases, Section: Stoichiometry of Gaseous Substances, Mixtures, and Reactions, Example 9.11 "g/L" is not density "rho" m/V (mass over volume) is rho Please do not use units in a mathematical expression as though they were variables.	Revise Example 9.11 Derivation of a Density Formula from the Ideal Gas Law as follows: In Step 4 of the solution, change "g/L" to "m/V".	Minor
Chapter 9.3: Gases; Section 9.3: Stoichiometry of Gaseous Substances, Mixtures, and Reactions; Subsection: Avogadro's Law Revisited; How Sciences Interconnect feature CH_3 as greenhouse gas should be CH 4.	Revise the figure in feature "How Sciences Interconnect: Greenhouse Gases and Climate Change" as follows: Correct CH_3 to CH_4. Add O 3.	Туро
Chapter 9.3: Gases; Section 9.3: Stoichiometry of Gaseous Substances, Mixtures, and Reactions; Subsection: Collection of Gases over Water The answer to the Check Your Learning for Example 9.16 should be 0.583 L since the question asks for volume.	Revise the answer to the Check Your Learning for Example 9.11 Derivation of a Density Formula from the Ideal Gas Law from "734 torr" to "0.583 L" as follows:	Туро
Chapter 9.3: Gases; Section 9.3: Stoichiometry of Gaseous Substances, Mixtures, and Reactions; Subsection: The Pressure of	Add the missing "were" into the first paragraph of subsection The Pressure of a Mixture of Gases: Dalton's Law, as follows: Each individual gas in a mixture exerts the same pressure that it would exert if it were present alone in the container	Туро

a Mixture of Gases: Dalton's Law The phrase, "exerts the same pressure that it would exert if it present alone in the container," should read, "exerts the same pressure that it would exert if it were present alone in the container."	(Figure 9.20).	
Chapter 9.3: Gases; Section 9.3: Stoichiometry of Gaseous Substances, Mixtures, and Reactions; Subsection: The Pressure of a Mixture of Gases: Dalton's Law The phrase, "total number of moles of all components):" has an unnecessary bracket.	Delete the unnecessary bracket at the end of the phrase "total number of moles of all components:".	Туро
Chapter 9.4: Gases Section: Effusion and Diffusion of Gases In the first equation, for the rate of diffusion, revise "rate of diffusio = " to "rate of diffusion = "	Fixed	Туро
Chapter 9.4: Gases Section: Effusion and Diffusion of Gases In the second equation, for the rate of effusion, revise "rate of effusio " to "rate of effusion "		Туро
Chapter 9.4: Gases; Section 9.4: Effusion and Diffusion of Gases The equation in Example 9.22 should read, "rate of effusion of unknown" over "rate of effusion of CO_2."	Revise "O2" to "CO2" in the equation in Example 9.22 as follows: rate of effusion of unknown/rate of effusion of CO2	Туро
Chapter 9.4: Gases; Section 9.4: Effusion and Diffusion of Gases The equation that appears before Figure 9.29 should read "rate of effusion of B" over "rate of effusion of A."	Revise the equation before Figure 9.29 so that "A" and "B" aren't cut off, as follows: rate of effusion of B/rate of effusion of A	Туро

Chapter 9.5: Gases, Section:		
The Kinetic-Molecular		
Theory, Subsection:		
Molecular Velocities and		
Kinetic Energy the		
appropriate form of the gas		
constant is 8.314 J/K (8.314		
kg m2s–2K–1) is missing a		
"per mole" in the definition	Revise the last paragraph of subsection	
of R and should be instead:	Molecular Velocities and Kinetic Energy as	
the appropriate form of the	follows: "When used in this equation, the	
gas constant is 8.314 J/mol-K	appropriate form of the gas constant is 8.314	
(8.314 kg m2s–2mol-1K–1)	J/mol x K (8.314 kg m^2s^-2mol^-1K^-1)."	Туро
		. , , , , , , , , , , , , , , , , , , ,
Chapter 9.5: Gases; Section		
9.5: The Kinetic-Molecular		
Theory; Subsection: The		
Kinetic-Molecular Theory		
Explains the Behavior of		
Gases, Part 1 Part of the		
caption for Figure 9.31		
currently reads, "(b) When		
volume decreases, gas		
pressure increases due to		
reduced frequency of		
molecular collisions."	Revise "reduced" to "increased" in part (b) of the	
	,	
However, it should read, "(b)	caption of the figure before subsection Molecular	
When volume decreases, gas	Velocities and Kinetic Energy, Figure 9.31, as	
pressure increases due to	follows: (b) When volume decreases, gas	
increased frequency of	pressure increases due to increased frequency of	
molecular collisions."	molecular collisions.	Туро
Chapter 9.5: Gases; Section		
9.5: The Kinetic-Molecular		
Theory; Subsection: The		
Kinetic-Molecular Theory		
Explains the Behavior of		
Gases, Part 1 Part of the		
caption for Figure 9.31		
currently reads, "(c) When		
the amount of gas increases		
at a constant pressure,		
volume increases to yield a	Add the phrase "per unit time" to part (c) of the	
constant number of	caption of the figure before subsection Molecular	
collisions per unit wall area."	Velocities and Kinetic Energy, Figure 9.31, as	
However, it should read, "(c)	follows: (c) When the amount of gas increases at	
When the amount of gas	a constant pressure, volume increases to yield a	
increases at a constant	constant number of collisions per unit wall area	
pressure, volume increases	per unit time.	Туро
protection of totalite increases	r	- 15 -

to yield a constant number of collisions per unit wall		
area per unit time."		
Chapter 9.5: Gases; Section		
9.5: The Kinetic-Molecular		
Theory; Subsection: The		
Kinetic-Molecular Theory		
Explains the Behavior of		
Gases, Part 1 The		
explanation of Charles's law		
says, "If the temperature of		
a gas is increased, a constant		
pressure can be maintained		
only if the volume occupied		
by the gas increases. This		
will result in greater average		
distances traveled by the		
molecules to reach the		
container walls, as well as		
increased wall surface area.		
These conditions will		
decrease both the frequency		
of molecule-wall collisions		
and the number of collisions		
per unit area, the combined		
effects of which outweigh		
those of increased collision		
forces due to the greater		
kinetic energy at the higher		
temperature. The net result		
is a decrease in gas		
pressure." This is a confused	Revise the description of Charles's law as follows:	
explanation with "constant	Charles's law. If the temperature of a gas is	
pressure" and "decrease in	increased These conditions will decrease the	
gas pressure." Suggest	both the frequency of molecule-wall collisions	
something like: "If the	and the number of collisions per unit area, the	
temperature of a gas is	combined effects of which balance the effect of increased collision forces due to the greater	
increased, a constant pressure can be maintained	kinetic energy at the higher temperature.	
only if the volume occupied	(Previous: Charles's law. If the temperature of a	
by the gas increases. This	gas is increased These conditions will decrease	
will result in greater average	the both the frequency of molecule-wall	
distances traveled by the	collisions and the number of collisions per unit	
molecules to reach the	area, the combined effects of which outweigh	
container walls, as well as	those of increased collision forces due to the	
increased wall surface area.	greater kinetic energy at the higher temperature.	
These conditions will	The net result is a decrease in gas pressure.)	Туро
	The net result is a acciedate in gas pressure.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

decrease both the frequency of molecule-wall collisions and the number of collisions per unit area, the combined effects of which will balance those of increased collision forces due to the greater kinetic energy at the higher temperature. The net result is a constant gas pressure."		
Chapter 9.5: Gases; Section 9.5: The Kinetic-Molecular Theory; Subsection: The Kinetic-Molecular Theory Explains the Behavior of Gases, Part 1 The phrase, "will decrease the both the frequency," should read, "will decrease both the frequency."	Fixed.	Туро
Chapter 9.6: Gases; Section 9.6: Non-Ideal Gas Behavior; Summary In the summary for Section 9.6: Non-Ideal Gas Behavior, the phrase, "non-ideal behavior of gases under conditions," should read, "non-ideal behavior of gases under these conditions."	Add the missing word "these" in the last sentence of the summary for Section 9.6 Non-Ideal Gas Behavior as follows: The van der Waals equation is a modified version of the ideal gas law that can be used to account for the non-ideal behavior of gases under these conditions.	Туро
Chapter 10: Liquids and Solids, End of Chapter Exercises, 29 The last exercise question in chapter 10.2 asks "Water rises in a glass capillary tube to a height of 17 cm. What is the diameter of the capillary tube?". The solution is 9.5 x 10^-5 m. If my calculations are correct, that is the radius not the diameter length.	Revise the solution to exercise 29 as follows: 29. Water rises in a glass capillary tube to a height of 17 cm Solution 1.9 x 10^-4 m	Туро
Chapter 10: Liquids and Solids; Answer Key; Question 19 Part of the answer to question 19 in chapter 10	Revise "DNA strands" to "protein strand" in the answer to question 19.	Туро

reads, "H-bonding is the principle intermolecular force holding the DNA strands together," but it should read, "H-bonding is the principle intermolecular force holding the protein strand in this shape."		
Chapter 10: Liquids and Solids; Answer Key; Question 63 The solution to question 63 parts (a) and (d) in chapter 10 reference water, but it should be carbon.	Revise "water" to "carbon" in the phase diagram solutions to question 63.	Туро
Chapter 10: Liquids and Solids; End of Chapter Exercises; Question 63 Question 63 of chapter 10 states that carbon has, "three different solid phases," but the diagram only shows 2.	Revise "three" to "two" in question 63 as follows: 63. Elemental carbon has one gas phase, one liquid phase, and two different solid phases	Туро
Chapter 10.1: Liquids and Solids; Section 10.1: Answer Key; Question 7 Part of the answer to question 7 part (c) of chapter 10 reads, "Hydrogen bonds form whenever a hydrogen atom is bonded to one of the more electronegative atoms, such as a fluorine, oxygen, nitrogen, or chlorine atom," but it should read, "Hydrogen bonds form whenever a hydrogen atom is bonded to one of the more electronegative atoms, such as a fluorine, oxygen or pitrogen atom "	Remove "chlorine" from the answer to part (c) of	Typo
nitrogen atom." Chapter 10.3: Liquids and Solids; Section 10.3: Phase Transitions; Subsection: Melting and Freezing The phrase, "the reciprocal process of melting and	question 7. Revise "process" to "processes" in the second paragraph of subsection Melting and Freezing as follows: In a mixture of solid and liquid at equilibrium, the reciprocal processes of melting and freezing occur at equal rates,	Туро

freezing occur at equal rates," should read, "the reciprocal processes of		
melting and freezing occur at equal rates."		
Chapter 10.3: Liquids and Solids; Section 10.3: Phase Transitions; Subsection: Vaporization and Condensation; Example 10.5 In the Check Your Learning to Example 10.5, the question uses a vapor pressure of 20 degrees, but the table says 25 degrees.	Revise the table in the Check Your Learning of Example 10.5 Explaining Vapor Pressure in Terms of IMFs to read "Vapor Pressure at 20 degrees C" instead of "25 degrees C".	Туро
Chapter 10.5: Liquids and Solids; Section 10.5: The Solid State of Matter The learning objective, "Define and describe the bonding and properties of ionic and molecular, metallic and covalent network crystalline solids" should read, "Define and describe the bonding and properties of ionic, molecular, metallic and covalent network crystalline solids."	Add commas to the first learning objective for section The Solid State of Matter as follows: Define and describe the bonding and properties of ionic, molecular, metallic, and covalent network crystalline solids.	Туро
Chapter 10.6: Liquids and Solids, Section: Lattice Structures in Crystalline Solids, Figure 10.59 Figure 10.59 shows an ionic crystal and the text explains that a CsCl crystal can be described as a simple unit cellbut there is a label in the figure that says 'Body-centered simple cubic structure'. This is VERY confusing.	Revise the label for Figure 10.59 to "Simple cubic structure".	Minor
Chapter 10.6: Liquids and Solids; Section 10.6: Lattice Structures in Crystalline Solids; Subsection: Unit Cells of Ionic Compounds In	Revise Figure 10.60 to show Face-Centered Cubic structure, not Body-Centered Cubic structure.	Туро

Figures 10.59 and 10.60, are the diagrams for the structures of CsCl and NaCl correct? The labels appear to be wrong.		
Chapter 11: Solutions and Colloids, End of Chapter Exercises, 33 Change answer to Ch. 11 33. (b) mole fraction NH4NO3 = 0.0925, mole fraction H2O = 0.907	Revise the solution to part b of exercise 33 as follows: Solution (b) XNH4NO3 = 0.9928	Туро
Chapter 11.1: Solutions and Colloids, Section: The Dissolution Process Instead of "As for the mixture of sugar and water" I think it would be better to say "As with the mixture of sugar and water"	Revise the first sentence of the third paragraph as follows: "As with the mixture of sugar and water, this mixture is also an aqueous solution."	Minor
Chapter 11.1: Solutions and Colloids; Section 11.1: The Dissolution Process In the second chemical equation in section 11.1, the Cr_2O_7 should have a charge of 2	Revise the second chemical equation in section 11.1 The Dissolution Process to have a charge of 2- for Cr2O7, as follows: K2Cr2O7(s)> 2K+(aq) plus Cr2O7 2-(aq)	Туро
Chapter 11.1: Solutions and Colloids; Section 11.1: The Dissolution Process The phrase, "When a small amount of solid potassium chromate is added to water, the compound dissolves and dissociates to yield potassium ions and dichromate ions," should read, "When a small amount of solid potassium dichromate is added to water, the compound	Revise "potassium chromate" to "potassium dichromate" in the third paragraph of Section	
dissolves and dissociates to yield potassium ions and dichromate ions"	11.1 The Dissolution Process as follows: When a small amount of solid potassium dichromate is added to water,	Туро
Chapter 11.4: Solutions and Colloids, Section: Colligative Properties, Example 11.2	Revise part (a) of the solution for Example 11.2 Calculating Mole Fraction and Molality as follows: Solution (a) The mole fraction mol H2O = 2000	
Example 11.2. The text takes	g × (1 mol H2O/18.02 g H2O) = 111 mol H2O	Minor

2000g of H2O, divides by the molar mass of H2O (18.02g) and arrives at 11.1 moles, when it should be 111 moles. This error propagates to the calculation of the mole fraction of H2O in the solution. By the way I love you guys for fighting the shameless textbook cartel. Thank you thank you thank you!	Xethylene glycol =[35.8 mol C2H4(OH)2]/[(35.8 + 111) mol total] = 0.245	
Chapter 11.4: Solutions and Colloids, Section: Colligative Properties, Subsection: Colligative Properties of Electrolytes Page 640, First sentence. Should say "solution of NaCl contains 2.0 moles of ions"	Revise the first sentence after Example 11.11 as follows: "Assuming complete dissociation, a 1.0 m aqueous solution of NaCl contains 2.0 mole of ions (1.0 mol Na+ and 1.0 mol Cl-) per each kilogram of water"	Critical
Chapter 11.4: Solutions and Colloids, Section: Colligative Properties, Subsection: Phase Diagram for an Aqueous Solution of a Nonelectrolyte Page 633, line 5: ?Tb should be replaced with ?Tf.	In the last paragraph, revise "DeltaT_b" to "DeltaT_f".	Major
Chapter 11.5: Solutions and Colloids; Section 11.5: Colloids; Subsection: Preparation of Colloidal Systems In the chemical equation that follows table 11.4, the state of 3Cl^- should be (s).	Revise the first chemical equation in subsection Preparation of Colloidal Systems as follows: Fe3+(aq) + 3Cl-(aq) + 6H2 O(I)> Fe(OH)3(s) + H3 O+(aq) + 3Cl-(aq) Previous: Fe3+(s) + 3Cl-(g) + 6H2 O(I)> Fe(OH)3(aq) + H3 O+(aq) + 3Cl-(aq)	Туро
Chapter 12: Kinetics, Answer Key Chapter 12 Problem #55. The answer in the appendix (Page 1339 of the pdf file) has the terms -Ea/R and 1/T mixed up. The answer should read " a plot of 1/T gives a straight line with the slope -Ea/R" The answer is correct in the	Revise the answer to 53 as follows: 53. After finding k at several different temperatures, a plot of 1/T gives a straight line with the slope -Ea/R,	Minor

separate Student Solutions		
Manual.		
Chapter 12: Kinetics, Answer Key My students have found six typos in the Chapter 12 end-of-chapter problems and in the solutions manual. Each typo is detailed on its own page in the attached document.	Revise the answers to questions 5, 43, and 81 as follows: 5. b. 0.0250 mol L^-1 s^-1 43. 1.0 x 10^7 L mol^-1 min^-1 81. a. b	Туро
Chapter 12: Kinetics, Answer Key Page 1337 Answer Key to problem 33 (from Chapter 12) The graph is labeled as [SO2Cl2] (M) (y axis) versus time (s) (x axis). The labels are in the correct place but the numbers on the y axis belong on the x axis and the numbers on the x axis belong on the y axis. I also suggest getting better data because this should be a straight line but it looks curved to me.	Revise the graph in the solution for exercise 33 to show a straight line. Switch the values on the x- and y-axes.	Critical
Chapter 12: Kinetics, End of Chapter Exercises, 23 The answer to Ch. 12, #23 has the wrong units of time for k. The answer should be k = 8.0 x 10-8 L/mol.h	In the solution to exercise 23, revise "L/mol/s" to "L/mol/h".	Туро
Chapter 12.1: Kinetics, Section: Chemical Reaction Rates, Figure 12.5 The equation in figure 12.5 is not balanced correctly. It should be 2NH3 ? N2 + 3H2	Revise the equation in the caption for Figure 12.5 to "2NH3> N2 + 3H2".	Critical
Chapter 12.3: Kinetics, Section: Rate Laws In the sentence "In Example 12.4, a second order reaction, we found the units for k to be L mole-4 s-1" The units are wrong they should be L. mol-1.s-1	In the paragraph above Table 12.1, revise the units for k to "L mol^-1 s^-1".	Major
Chapter 12.5: Kinetics,	Revise the last sentence of the caption for Figure	Туро

Section: Collision Theory The last sentence in the description of Figure 12.16: Should say "The curve's peak represents the transition state"	12.16 as follows: "The curve's peak represents the transition state."	
Chapter 12.6: Kinetics, Section: Reaction Mechanisms Figure 12.19 says that it shows the "probable mechanism" for the dissociation of two HI molecules into hydrogen and iodine molecules. The reverse of this reaction was extensively studied in the 1960's by Sullivan (see Journal of Chemical Physics 47, 1967, pp 73-78), who showed conclusively that the "four-center" mechanism depicted in Figure 12.19 was wrong. This fact is specifically mentioned in some general chemistry texts, such as Chang's "Chemistry," as well as in some physical chemistry texts and more advanced texts, for example "Chemical Kinetics" by Pilling and Seakins or "Chemical Kinetics and Dynamics" by Steinfeld, Francisco, and Hase.	Revise the last paragraph of Section Reaction Mechanisms as follows: "Some chemical reactions have mechanisms that consist of a single bimolecular elementary reaction. One example is the reaction of nitrogen dioxide with carbon monoxide: NO2(g) + CO(g)> NO(g) + CO2(g) Figure 12.19 Caption: The probable mechanism for the reaction between NO2 and CO to yield NO and CO2. Bimolecular elementary reactions may also be involved as steps in a multistep reaction mechanism	Major
Chapter 13: Fundamental Equilibrium Concepts, End of Chapter Exercises, 25 Ch. 13, Problem 25(b) should have phases for the reactants and products. All phases should be gas (g).	Revise exercise 25 part b as follows: 25. Convert the values of Kc to values of KP or the values of KP to values of Kc. (b) H2 (g) + I2 (g) <> 2HI (g)	Major
Chapter 13: Fundamental Equilibrium Concepts, End of Chapter Exercises, 79 Answer to Ch. 13 79) should be [PCl3] = [Cl2] = 0.195 M,	In the solution to exercise 79, revise "[PCl3]" to "[PCl5]".	Туро

[PCl5] = 1.81 M		
Chapter 13: Fundamental Equilibrium Concepts, End of Chapter Exercises, 87 Correct answer to Ch. 13 #87 is 33 g CaCO3	Revise the solution to exercise 87 to 33 g.	Туро
Chapter 13.2: Fundamental Equilibrium Concepts, Section: Equilibrium Calculations, Example 13.6 image table in section Calculation of an Equilibrium Constant has extraneous text. Should be just numbers, not []i. One never puts numbers into an "initial concentration"	In Example 13.6 Calculation of an Equilibrium Constant, revise the first ICE table to show "1.000	Tume
bracket. Chapter 13.2: Fundamental	x 10^-3 - x" for Equilibrium concentration (M).	Туро
Equilibrium Concepts, Section: Equilibrium Constants, Figure 13.7 Figure 13.7, right side "At equilibrium" image for mixture 3 is still incorrect, in both the 2015 and 2016 printings of the textbook. Using the values in the latest printing give an equilibrium constant that is the inverse of what it should actually be.	Revise mixture 3 in the right side of Figure 13.7 to show the correct equilibrium constant.	Major
Chapter 13.4: Fundamental Equilibrium Concepts, Section: Equilibrium Calculations, End of Chapter Exercises Chapter 13.4 Exercise #93 has a typo in the formula for Kc. It should read: (PH2)^2. I.e. the partial pressure of H2 should be squared, not cubed. The rest of the equation is fine.	Revise the exponent in the denominator of the equation in exercise 93 from "3" to "2".	Туро
Chapter 13.4: Fundamental Equilibrium Concepts, Section: Equilibrium		
Calculations, Subsection:	Below the Kc expression, revise "x2" to "x^2".	Minor

Calculation of Changes in Concentration Below the Kc expression. In the "x2" term, the "2" should be in superscript since this term is "x squared".		
Chapter 14: Acid-Base Equilibria, Appendix H Appendix H – some Ka values do not match values used within Chapter 14. Ka for HCO3- should be 4.7 x 10^-11 instead of 5.6 x 10^- 11	Revise the Ka value given in Appendix H for HCO3- to 4.7 x 10 ^-11. Update examples in Ch. 14 to match.	Туро
Chapter 14: Acid-Base Equilibria, End of Chapter Exercises, 37 Ch. 14, Problem #37. The second conjugate acid should have the formula (CH3)2NH3+, NOT (CH3)2NH.	Revise exercise 37 as follows: 37. Which base, CH3NH2 or (CH3)2NH, is the strongest base? Which conjugate acid, (CH3)2NH2+ or (CH3)2NH3+, is the strongest acid?	Туро
Chapter 14: Acid-Base Equilibria; Answer Key; Question 81 The answer to question 81 in chapter 14 does not make sense.	Revise the answer to question 81 as follows: 81. [H3O+] and [HCO3?] are practically equal	Туро
Chapter 14: Acid-Base Equilibria; End of Chapter Exercises; Question 33 The chemical equation that is the solution to question 33 in chapter 14 is not balanced.	Add a "2" in front of HCl in the equation for question 33 as follows: 33. Mg(OH)2(s) + 2HCl(aq) > Mg2+(aq) + 2Cl-(aq) + 2H2 O(I)	Туро
Chapter 14: Acid-Base Equilibria; End of Chapter Exercises; Question 37 In Chapter 14, question 37, "strongest acid" should be "stronger acid."	Revise "strongest" to "stronger" in question 37.	Туро
Chapter 14.1: Acid-Base Equilibria, Section: Brønsted- Lowry Acids and Bases In your passage about the development of acid-base theories Carl Axel Arrhenius is named as the person behind the Arrhenius model	In the first paragraph, revise "Carl Axel Arrhenius" to "Svante Arrhenius".	Major

in 1884. Actually it was		
Svante Arrhenius. As online		
research shows, Carl Axel		
Arrhenius was an army		
officer, who died in 1824.		
Your sincerely, Gerd Berger		
Chapter 14.1: Acid-Base		
Equilibria; Section 14.1:		
Bronsted-Lowry Acids and		
Bases The phrase, "adding		
ammonia to water yields		
hydroxide ions and		
ammonium ions" should be		
"adding a base to water		
-		
yields hydroxide ions and a		
corresponding cation." Note	Revise the text as follows: "Adding pyridine to	
that the example given does	water yields hydroxide ions and pyridinium ions."	
not match the text	(Previous: Adding ammonia to water yields	
description.	hydroxide ions and ammonium ions.)	Туро
Chapter 14.1: Acid-Base		
Equilibria; Section 14.1:		
Bronsted-Lowry Acids and		
Bases; Example 14.1 In		
Example 14.1, remove the +	Remove the + sign after the superscript 2 in the	
sign after the superscript 2.	first equation in Example 14.1 Ion Concentrations	
(There are two instances of	in Pure Water as follows: Kw = [H3O+][OH-] =	
this.)	[H3O+]2 = [OH-]2 = 1.0 x 10-14	Туро
Chapter 14.1: Acid-Base		71
Equilibria; Section 14.1:		
Bronsted-Lowry Acids and		
Bases; Summary The last		
equation in the summary of	Revise the last equation n the summary of	
section 14.1 has a typo.	section 14.1 from "H2O" to "H3O" as follows: Kw	
H_2O should be H_3O.	= [H3O+][OH?] = 1.0 × 10^-14 at 25 degrees C	Туро
Chapter 14.3: Acid-Base	Revise Example 14.11 Determination of Ka or Kb	
Equilibria, Section: Relative	from pH as follows: Delete the first ICE table in	
Strengths of Acids and Bases	the Solution. Revise Example 14.12 Equilibrium	
p802 - Reaction missing a	Concentrations in a Solution of a Weak Acid as	
species and ICE table has the	follows: Correct the alignment of the columns in	
columns placed incorrectly	the first ICE table in the Solution.	Minor
Chapter 14.3: Acid-Base		
Equilibria, Section: Relative		
Strengths of Acids and		
Bases, Subsection: Effect of		
	In the first paragraph, revise "group 7A" to "group 17" and "group 6A" to "group 16".	Major

The group numbers in the figure do not match the group numbers in the preceding text. One method of numbering groups in the periodic table should be used throughout the entire textbook.		
Chapter 14.3: Acid-Base Equilibria; Section 14.3: Relative Strengths of Acids and Bases In the phrase, "by measuring their equilibrium constants," equilibrium is misspelled.	Correct the spelling of "equlibrium" to "equilibrium".	Туро
Chapter 14.3: Acid-Base Equilibria; Section 14.3: Relative Strengths of Acids and Bases; Subsection: The Ionization of Weak Acids and Weak Bases In the caption to Figure 14.9, the phrase, "is has a pH of 3," should be, "has a pH of 3."		Туро
Chapter 14.4: Acid-Base Equilibria, Section: Hydrolysis of Salt Solutions, Section: Salts of Weak Acids and Strong Bases The second paragraph states "The sodium ion, as the conjugate acid of a strong base, has not effect on the acidity of the solution." Na+ is not the conjugate acid of NaOH. Water is the conjugate acid of NaOH, and Na+ is simply a spectator ion that does not form an acidic hydrated species like other metal cations.	Revise the second paragraph as follows: "A solution of this salt contains sodium ions and acetate ions. The sodium ion has no effect on the acidity of the solution. However, the acetate ion, the conjugate base of acetic acid, reacts with water and increases the concentration of hydroxide ion:"	Critical
Chapter 14.4: Acid-Base Equilibria, Section: Hydrolysis of Salt Solutions, Subsection: Equilibrium in a	Revise the answer to part(c) of Example 14.17 "Determining the Acidic or Basic Nature of Salts" Check Your Learning to "acidic."	Major

Solution of a Salt of a Weak		
Acid and a Weak Base Revise		
the answer to letter (c) of		
Check Your Learning in		
Example 14.17 to "acidic."		
Chapter 14.4: Acid-Base		
Equilibria, Section:		
Hydrolysis of Salt Solutions, Subsection: Equilibrium in a		
Solution of a Salt of a Weak		
Acid and a Weak Base There		
is an error in the reasoning		
and calculation used to		
determine an answer to		
Example 14.17 (d) on p. 814.		
(d) The Na+ ion is a		
spectator, while the HPO42-		
ion is amphiprotic, with a Ka		
of 4.2 x 10^-13. The Kb of		
HPO42- can be determined	Revise the solution to Example 14.17	
from the Ka of its conjugate acid, H2PO4-: Kb = (1.0 x	"Determining the Acidic or Basic Nature of Salts" as follows: (d) The Na+ cation is a spectator, and	
$10^{-14}) / (6.2 \times 10^{-8}) = 1.6$	will not affect the pH of the solution, while the	
x 10^-7. Since Kb > Ka, the	HPO4^2- anion is amphiprotic. The Ka of	
aqueous solution will be	HPO4^2- is 4.2 × 10^-13, and its Kb is (1.0 × 10^-	
basic.	14)/(6.2 × 10^-8) = 1.6 × 10^-7.	Major
Chapter 14.4: Acid-Base		
Equilibria, Section:		
Hydrolysis of Salt Solutions,		
Subsection: Equilibrium in a		
Solution of a Salt of a Weak		
Acid and a Weak Base There		
is an error in the reasoning		
and calculation used to determine the answer to		
Example 14.17 (b) on p. 814.		
(b) The Na+ cation is a		
spectator; and will not affect		
the pH of the solution; while		
the HCO3– anion is		
amphiprotic, it could either	Revise the solution to Example 14.17	
behave as an acid or a base.	"Determining the Acidic or Basic Nature of Salts"	
The Ka of HCO3– is 4.7 x	as follows: (b) The Na+ cation is a spectator, and	
10^-11; the Kb of HCO3– can	will not affect the pH of the solution; while the	
be determined from the Ka	HCO3- anion is amphiprotic. The Ka of HCO3- is	
of its conjugate acid, H2CO3: Kb = (1.0 x 10^-14) / (4.3 x	4.7 × 10^-11, and its Kb is (1.0 × 10^-14)/(4.3 × 10^-7) = 2.3 × 10^-8.	
$1 \text{ K D} = (1 \ (1 \ \text{V} \ 1 \ \text{O} \ \text{L})^{-1} / (1 \ \text{V} \ 1 \ \text{O} \ \text{L})^{-1} / (1 \ \text{V} \ 1 \ \text{O} \ \text{V})^{-1} / (1 \ \text{V} \ 1 \ \text{O} \ \text{V})^{-1} / (1 \ \text{V} \ 1 \ \text{O} \ \text{V})^{-1} / (1 \ \text{V} \ 1 \ \text{O} \ \text{V})^{-1} / (1 \ \text{V} \ 1 \ \text{O} \ \text{V})^{-1} / (1 \ \text{V} \ 1 \ \text{O} \ \text{V})^{-1} / (1 \ \text{V} \ 1 \ \text{O} \ \text{V})^{-1} / (1 \ \text{V} \ 1 \ \text{O} \ \text{V})^{-1} / (1 \ \text{V} \ 1 \ \text{O} \ \text{V})^{-1} / (1 \ \text{V} \ 1 \ \text{O} \ \text{V})^{-1} / (1 \ \text{V} \ 1 \ \text{O} \ 1 \ 1 \ \text{O} \ 1 \ 1 \ \text{O} \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ $	(100 - 7) - 7 + 2 + 100 - 2	Major

$100.7) = 2.2 \times 100.9$ Since		
10^-7) = 2.3 x 10^-8. Since Kb > Ka, the aqueous		
solution will be basic.		
Chapter 14.4: Acid-Base Equilibria; Section 14.4:		
Hydrolysis of Salt Solutions;		
Subsection: The Ionization of		
Hydrated Metal Ions The		
sentence, "Note that some		
of these aluminum species		
are exhibiting amphiprotic		
behavior, since they are		
acting as acids when they		
appear on the right side of		
the equilibrium expressions		
and as bases when they		
appear on the left side,"		
should read, "Note that		
some of these aluminum	Switch "right" and "loft" in the fourth paragraph	
species are exhibiting amphiprotic behavior, since	Switch "right" and "left" in the fourth paragraph of Subsection The Ionization of Hydrated Metal	
they are acting as acids	lons as follows: Note that some of these	
when they appear on the	aluminum species are exhibiting amphiprotic	
left side of the equilibrium	behavior, since they are acting as acids when	
expressions and as bases	they appear on the left side of the equilibrium	
when they appear on the	expressions and as bases when they appear on	
right side."	the right side.	Туро
Chapter 14.5: Acid-Base		
Equilibria, Section:		
Polyprotic Acids p823 - ICE	In Example 14.19 Ionization of a Diprotic Acid,	
table columns not aligned.	revise the alignment of the columns in the first	
submitted via ZenDesk	ICE table.	Minor
Chapter 14.6: Acid-Base		
Equilibria, Section: Buffers,		
End of Chapter Exercises The		
answer for Chapter 14		
problem 107 in the back of		
the book is incomplete. It does not give an answer for	Revise the answer to exercise 107 as follows:	
the [saccharin] ([HA]).	107. Saccharin, C7H4NSO3H, is a weak acid (Ka =	
Assuming the question is	2.1 x 10^-2) Answer: The molar mass of sodium	
considering that the	saccharide is 205.169 g/mol. Using the	
'buffered' solution does not	abbreviations HA for saccharin and NaA for	
change pH, then the	sodium saccharide the number of moles of NaA	
Henderson-Hasselbach	in the solution is: 9.75 x 10^-6 mol The pKa for	
equation gives an answer:	[HA] is 1.68, so [HA] = 6.2 x 19^-9 M. Thus, [A-]	
[HA] = 6.1x10^-9	(saccharin ions) is 3.90 x 10^-5 M.	Minor

Chapter 14.7: Acid-Base Equilibria, Section: Acid-Base Titrations, End of Chapter Exercises Problem #112 of Chapter 14 (pg.828) does not state a proper question. Should it read something like: "WHY can we ignore?"	Revise exercise 112 as follows: "Why can we ignore the contribution of water to the concentration of OH- in a solution of the following bases"	Minor
Chapter 14.7: Acid-Base Equilibria; Section 14.7: Acid-Base Titrations; Subsection: Titration Curve The caption for Figure 14.21 reads, "(a) The titration curve for the titration of 25.00 mL of 0.100 M CH_3COOH (weak acid) with 0.100 M NaOH (strong base) has an equivalence point of 7.00 pH. (b) The titration curve for the titration of 25.00 mL of 0.100 M HCl (strong acid) with 0.100 M NaOH (strong base) has an equivalence point of 8.72 pH." However, it should read, "(a) The titration curve for the titration of 25.00 mL of 0.100 M HCl (strong acid) with 0.100 M NaOH (strong base) has an equivalence point of 7.00 pH. (b) The titration curve for the titration of 25.00 mL of 0.100 M CH_3COOH (weak acid) with 0.100 M NaOH (strong base) has an equivalence point of 8.72 pH."	Reivse "CH3COOH (weak acid)" to "HCI (strong acid)" in part (a) of the caption for Figure 12.21 titration curves.	Туро
Chapter 15: Equilibria of Other Reaction Classes, Section: Precipitation and Dissolution In solving for the formation of a solid, two Ksp values are given and two Molar concentrations. In the	Revise the solution to Example 15.11 "Precipitation of Silver Halides" as follows: Solution For AgI: AgI precipitates when Q equals Ksp for AgI (1.5×10^{-16}). When [I-] = 0.0010 M: Q = [Ag+][I-] = [Ag+](0.0010) = 1.5×10^{-16} [Ag+] = (1.5×10^{-16})/(0.0010) = 1.5×10^{-15} M	Major

first calculation to find the		
concentration of Silver, the		
wrong Ksp values and		
concentration are plugged in		
for Agl, but the correct		
answer is still given as if the		
right numbers had been		
plugged in.		
Chapter 15.1: Equilibria of		
Other Reaction Classes,		
Section: Precipitation and		
Dissolution, End of Chapter		
Exercises The answers for		
Chapter 15.1 29a and 29b		
are incorrect in the Solutions		
in the back of the book. The		
correct answers should be:		
29a: 1.5x10^-4 : Ksp =		
[Tl+][Cl-] = (1.21x10^-		
2)(1.2x10-2) = 1.5x10^-4		
29b: 8.2x10^-55 : Ksp =		
[Ce+4][IO3-]^4 = (1.8x10^-		
4)(2.6x10^-13)^4 = 8.2x10^-	Revise the answer to exercise 29 as follows: 29.	
55 I suppose it is also	The following concentrations are found in	
possible that instead of	mixtures of ions in equilibrium with slightly	
incorrect answers, the listed	soluble solids. From the concentrations given,	
concentrations are incorrect.	calculate Ksp for each of the slightly soluble solids	
In either case, the	indicated: (a) TICI: [TI+] = 1.21 x 10^-2 M, [CI-] =	
concentrations and the	1.2 x 10^-2 M (b) Ce(IO3)4: [Ce4+] = 1.8 x 10^-4	
answers don't match. 29c-e	M, [IO3-] = 2.6 x 10^-13 M Answer: (a) 1.7 x	
are all correct, however.	10^-4 (b) 8.2 x 10^-55	Minor
Chapter 15.1: Equilibria of		
Other Reaction Classes,		
Section: Precipitation and		
Dissolution, Example 15.10		
Example Problem 15.10 (pg		
841 PDF) has a typo in the		
Ksp value for Mn(OH)2. The	Revise the Ksp value in the soultion of Example	
value should be 2x10^-13	15.10 Concentrations Following Precipitation as	
(per Appendix J).	follows: "Ksp = 2 x 10^-13"	Minor
, , ,		
Chapter 15.1: Equilibria of		
Other Reaction Classes,	Powice the answer to Check Vour Learning in	
Section: Precipitation and	Revise the answer to Check Your Learning in	
Dissolution, Example 15.12	Example 15.12 Common Ion Effect as follows:	
The answer to the check	Check Your Learning Calculate the molar	
your learning question in	solubility of aluminum hydroxide Answer: 4 x	Major
example 15.12 should be 4 x	10^-11	Major

10^-11.		
Chapter 15.1: Equilibria of Other Reaction Classes, Section: Precipitation and Dissolution, Example 15.5 Revise answer for Check Your Learning exercsise 15.5 to be: 2.08 x 10^-4. Location: Chapter 15: Equilibria of Other Reaction Classes; Section 15.1: Precipitation and Dissolution; subsection: Ksp and Solubility Both the numerical answer and the number of significant figures are incorrect. For the equilibrium: TICI (s)> TI^+ (aq) + CI^- (aq) we have Ksp = [TI^+][CI^-] Given 3.46 g TICI dissolves in 1 L, it follows that: 3.46g/(239.93 g/mol) = 0.01442 mol TICI		
dissolves in 1 L, so there will be the following concentrations: [TI^+] = [CI^-] = 0.01442 M so: Ksp = (0.01442 M)(0.01442 M) = 2.08 x 10 ^-4	Revise the solution to the Check Your Learning question in Example 15.5 Determination of Ksp from Gram Solubility as follows: Answer 2.08 × 10^-4	Major
Chapter 15.2: Equilibria of Other Reaction Classes, Section: Lewis Acids and Bases, Table 15.2 Table 15.2. The title of the table should be " Formation Constant" NOT "Formulation Constants"	Revise the title of Table 15.2 to "Common Complex Ions by Decreasing Formation Constants".	Туро
Chapter 15.3: Equilibria of Other Reaction Classes, Section: Multiple Equilibria, End of Chapter Exercises Problem #103 of the Chapter 15.3 Problem set has an incorrect answer in the back of the book. Using the values from the appendix of: Ksp CdCO3 = 5.2x10^-12 H2CO3 Ka1 = 4.3x10^-7, Ka2 =	Revise exercise 103 as follows: 103. Calculate the	Minor

5.6x10^-11 The value for the		
concentration of Cd2+ would		
be 2.3x10^-6 M. The book		
lists the answer as 3.1x10^-3		
М		
Chapter 15.3: Equilibria of		
Other Reaction Classes,		
Section: Multiple Equilibria,		
End of Chapter Exercises		
Problem #107 of the Chapter		
15.3 problem set has an		
incorrect answer in the back		
of the book. Using values		
from the Appendices of:		
Mg(OH)2 Ksp = 8.9x10^-12		
HCN Ka = 4.9x10^-10 The		
answer should be 0.047g		
NaCN. The book lists the		
answer as 5.4x10^-3 g.	Revise the answer to exercise 107 to 0.0036 g.	Minor
Chapter 16:		
Thermodynamics, End of		
Chapter Exercises, 25 For Ch.		
16, Problem #25. The		
questions should say		
"values listed in Appendix		
G, calculate ?So298 for the		
following changes:"	In exercise 25, revise "S 298" to "Delta S 298".	Туро
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Chapter 16:		
Thermodynamics, End of		
Chapter Exercises, 35		
Chapter 16 #35 has an error		
with the phases of P4O10. In		
order for them to cancel out,		
the phases should match.		
For the free energy values		
listed, the phase P4P10		
should be solid in both		
instances. That is, the final		
reaction should be written 6	Device the third equation is even in 25 at	
H2O (g) + P4O10 (s)> 4	Revise the third equation in exercise 35 as	
H3PO4 (I) with delta $G = -$	follows: 35. Given: 6H2O(g) + P4O10(s)?4H3	Turner
428.66 kJ/mol.	PO4(I)	Туро
Chapter 16:		
Thermodynamics, End of		
Chapter Exercises, 57 I	Revise the solution for exercise 57 part a to 22.1	
believe the correct answer	kJ.	Туро

to $Ch = 16 \# (7/2)$ should be		
to Ch. 16 #57(a) should be 22.1 kJ NOT -22.1 kJ.		
Chapter 16: Thermodynamics, End of Chapter Exercises, 59 Ch. 16, Problem #59. Should be "77.1 kJ/mole". The "J" is missing in "kJ".	In exercise 59, revise "k/mole" to "kJ/mole".	Туро
Chapter 16.2: Thermodynamics, Section: Entropy Page 907: Third sentence below figure 16.8: "The probability of finding the system in this configuration is or 6/16 or 3/8" Delete the second "or".	In the first paragraph after Figure 16.8, delete the duplicate "or" before "6/16 or 3/8".	Туро
		- 900
Chapter 16.4: Thermodynamics, Section: Free Energy, Example 16.11 Revise the answer to Check Your Learning Example 16.11 to be -41.7 kJ; yes. Location: Chapter 16: Thermodynamics; Section 16.4 Free Energy; Subsection: Free Energy and Equilibrium Using the equations: 2 NH3> 3 H2 + N2 and (delta)G = (delta)G(standard) + RTInQ and the given values: (delta)G(standard) = 33.0 kJ /mol R = 8.3144 J/(mol K) = 8.3144 x 10^-3 kJ/(mol K) T = 875 degC + 273 = 1148 K [NH3] = [H2] = [N2] = (0.100 mol / 5.00 L) where: Q = ([H2]^3[N2])/[NH3]^2 we have: (delta)G = 32.0 kJ/mol		
have: (delta)G = 33.0 kJ/mol + (8.3144 x 10^-3 kJ/(mol K))(1148 K)(ln{[(0.100/5.00)^3(0.100/ 5.00)]/(0.100/5.00)^2} carrying out the math:	Revise the answer for the Check Your Learning for Example 16.11 Calculating DeltaG under	
(delta)G = -41.7 kJ/mol or (delta)G = -41.7 kJ for the	Nonstandard Conditions as follows: Answer Delta G = -47 kJ/mol; yes	Major

reaction as written I tried to determine how the current incorrect answer in the text was obtained, but I can't figure out what the authors did wrong to get their answer.		
Chapter 16.4: Thermodynamics, Section: Free Energy, Subsection: Free Energy and Equilibrium The text states "Conversely, if Q < K, the process will proceed in the reverse direction until equilibrium is achieved". It should say "Q>K".	Revise the last sentence of the second paragraph of subsection Free Energy and Equilibrium as follows:"Conversely, if Q > K, the process will proceed in the reverse direction until equilibrium is achieved."	Туро
Chapter 17: Electrochemistry, Answer Key, Question 7 Q7 and answers do not correspond	Remove parts (a) of the answer to question 7, and re-letter the remaining answers to (a), (b), and (c).	Туро
Chapter 17: Electrochemistry, End of Chapter Exercises, 24 Ch. 17 #24(b): The reaction is not balanced. Should be 3Cu2+(aq) + 2Al(s) ? 2Al3+(aq) + 3Cu(s)	Revise part b of exercise 24 as follows: (b) 3Cu2+(aq) + 2Al(s)> 2Al3+(aq) + 3Cu(s)	Minor
Chapter 17: Electrochemistry, End of Chapter Exercises, 28 Ch. 17 problem#28. Br- and Br2 are in the same phase, so they should be separated by a comma, not a single vertical line.	In exercise 28, replace the line between Br2 (aq) and br-(aq) with a comma.	Major
Chapter 17: Electrochemistry, End of Chapter Exercises, 31 Ch. 17 #31(c) I believe should say "bromide is oxidized to bromine"	Revise part c of exercise 31 as follows: 31. Determine the standard cell potential and the cell potential under the stated conditions (c) The cell made of a half-cell in which 1.0 M aqueous bromide is oxidized to 0.11 M bromine ion and a half-cell in which aluminum ion at 0.023 M is reduced to aluminum metal.	Major
Chapter 17: Electrochemistry; Answer Key; Question 13 In the	Revise "Ni+" to Ni2+" in the solution to question 13 part (a).	Туро

solution to question 13 in		
Chapter 17, the charge on Ni		
should be 2+.		
Chapter 17.3:		
Electrochemistry, Section:		
Standard Reduction		
Potentials, Table 17.2		
Standard reduction potential	Revise the following values in Table 17.2:	
values in Appendix L,	Cu2+(aq) + 2e> Cu(s) +0.34 AgCl(s) + e>	
disagree with some of the	Ag(s) + Cl-(aq) +0.22233 Pb2+(aq) + 2e> Pb(s) -	
values in Table 17.2.	0.1262 Sn2+(aq) + 2e> Sn(s) -0.1375	Туро
Chapter 17.4:		/1
Electrochemistry, Section:		
The Nernst Equation When		
defining the Faraday		
constant on this page "F =		
" The constant goes from		
9.648 x 10^4 to 9.684 x		
10^4. I believe the number	In the equation for Foradov's constant, rovice	
	In the equation for Faraday's constant, revise "9.684" to "9.648".	Minor
should remain the same.	9.084 (0 9.048 .	Minor
Chapter 17.4:		
Electrochemistry, Section:		
The Nernst Equation,		
Example 17.5 In Example		
17.5. The sentence "The two		
equilibrium constants differ		
slightly due to rounding in		
the constants 0.0257 V and		
0.0592 V." I find to be		
confusing, since in this		
example the equilibrium	In Example 17.5 Equilibrium Constants, Standard	
constant was only calculated	Cell Potentials, and Standard Free Energy	
with the 0.0592 V constant. I	Changes, delete the following sentence: "The two	
think it would be best to	equilibrium constants differ slightly due to	
remove this sentence or	rounding in the constants 0.0257 V and 0.0592	
modify it.	V."	Minor
Chapter 17.5:		
Electrochemistry, Section:		
Batteries and Fuel Cells,		
Subsection: Secondary		
Batteries The chemical		
reaction equations for		
lithium ion batteries in		
chapter 17 are not balanced	In the discussion of Lithium ion batteries, revise	
correctly (one Li on the left,	the subscript "x - 1" to "1 - x" in the reactions	
and 2x-1 on the right). The x-		Туро
3 ,	1-	••

1 subscript should be 1-x.		
Chapter 17.5:		
Electrochemistry; Section		
17.5: Batteries and Fuel		
Cells; Subsection: Primary		
Batteries In Figure 17.10, the		
top of the dry cell should be	Revise the charge given at the top of the dry cell	
positive.	in Figure 17.10 to be positive.	Туро
Chapter 17.6:		
Electrochemistry, Section:		
Corrosion, Figure 17.18		
Reporting several errors in		
the last figure in the		
"Corrosion" section of		
chapter 17. Details provided		
below, and a sample image		
illustrating the		
recommended revisions is		
attached. 1. The figure has		
arrows suggesting current		
flow through a "lead wire"		
connecting the protected		
item to the sacrificial anode.		
Readers will / should assume		
those arrows indicate flow		
of electrons, in which case		
they're pointing in the		
wrong direction (should be		
from sacrificial anode to		
protected item). Best		
remedy would be swap the		
locations of the protected		
item and the anode, that		
way the conventional		
depiction of an		
electrochemical cell, with		
anode on left and cathode		
on right, electrons flowing		
left-to-right, is honored. 2.		
The arrows in the soil give		
the incorrect impression		
that electrons are flowing		
through the soil these		
arrows should be removed,	Deplace Figure 17.10 with an undered and	
and perhaps replaced with	Replace Figure 17.18 with an updated version	
more accurate depictions of	that shows the electrons flowing from the	Major
the ion flow occuring within	sacrificial anode to the object to be protected.	Major

the soil. 3. Would be helpful		
to include typical half-		
reactions at each of the two		
objects, e.g., reduction of		
oxygen at the protected		
item and oxidation of anode		
material at the anode. 4. It's		
not clear if the wire		
connecting the two objects		
is labeled to indicate its		
function ("lead" as		
pronounced "leed") or its		
composition (the element		
Pb). If the former, better to		
replace "lead" with		
"connecting", or just omit		
the label altogether. If the		
latter, should replace "lead"		
with "Pb", though I'd argue		
against this non-useful detail		
being included at all. 5.		
Finally, the label "no power		
source is needed" should be		
removed. This is a true		
statement for "passive"		
cathodic protection, but not		
for "active" cathodic		
protection. Unless details		
are added to the text		
narrative to clarify these two		
different approaches, it's		
best not to give the false		
-		
impression that cathodic		
protection never requires an		
external power source.		
Chapter 17.6:		
Electrochemistry; Section		
17.6: Corrosion. In the		
equation, "cathode: O_2(s) +		
$2H^+(aq) + 4e^-$ yields	Revise "2H+ (aq)" to "4H+ (aq)" in the equation	
2H_2O(I)," the 2H^+ should	after "The electrons reduce oxygen in the air in	
be 4H^+.	acidic solutions."	Туро
Chapter 18: Representative		
Metals, Metalloids, and		
Nonmetals; End of Chapter		
Exercises; Question 3 In the	Change "SeSe" to "SrSe" in the answer to	
answer to question 3 in	question 3.	Туро
•		•

chapter 18, change SeSe to		
SrSe.		
Chapter 18: Representative Metals, Metalloids, and Nonmetals; Key Terms In the key terms list of chapter 18, change, "metal atoms of the metallic elements of groups 1, 2, 12, 13, 14, 15 and 16, which form ionic compounds by losing electrons from their outer s or p orbitals," to, "metal (representative) metallic elements of groups 1, 2, 12, 13, 14, 15 and 16, which form ionic compounds by losing electrons from		
their outer s or p orbitals."	(representative)".	Туро
Chapter 18.1: Representative Metals, Metalloids, and Nonmetals; Section 18.1: Periodicity; Subsection: Group 12 In the caption to Figure 18.7, the phrase, "Zinc is an active transition metal," should say, "Zinc is an active metal"	Revise "Zinc is an active transition metal" to "Zinc is an active metal" in the caption to Figure 18.7.	Туро
Chapter 18.2: Representative Metals, Metalloids, and Nonmetals; Section 18.2: Occurrence and Preparation of the Representative Metals; Subsection: The Preparation of Zinc Under the subsection, "The Preparation of Zinc," Co_2 should be CO_2.	Revise "Co2" to "CO2" in subsection The Preparation of Zinc.	Туро
Chapter 18.4: Representative Metals, Metalloids, and Nonmetals, Section: Structure and General Properties of the Nonmetals oxidation states missing from some	Properly align oxidation numbers below equations.	Туро

equations		
Chapter 18.4: Representative Metals, Metalloids, and Nonmetals; Section 18.4: Structure and General Properties of the Nonmetals The phrase, "There are four general aspects of the oxidation- reduction chemistry," should		
read, "There are five general aspects of the oxidation- reduction chemistry"	Revise "four" to "five" in the phrase "There are five general aspects of the oxidation-reduction chemistry"	Туро
Chapter 18.4: Representative Metals, Metalloids, and Nonmetals; Section 18.4: Structure and General Properties of the Nonmetals; Subsection: Phosphorus The phrase, "shown in Figure 18.24 and Figure 18.24," should read, "shown in Figure 18.24."	Revise the phrase "shown in Figure 18.24 and Figure 18.24," to "shown in Figure 18.24."	Tumo
Chapter 18.4: Representative Metals, Metalloids, and Nonmetals; Section 18.4: Structure and General Properties of the Nonmetals; Subsection: Sulfur The phrase, "For example, members of group 15 have five valence elements," should read, "For		Туро
example, members of group 15 have five valence electrons"	Revise the phrase "members of group 15 have five valence elements," to "members of group 15 have five valence electrons" in subsection Sulfur.	Туро
Chapter 18.4: Representative Metals, Metalloids, and Nonmetals; Section 18.4: Structure and General Properties of the Nonmetals; Subsection: Sulfur The phrase, "so named because of the shape		
or its crystals," should read, "so named because of the	Revise "or its crystals" to "of its crystals" in subsection Sulfur.	Туро

shape of its crystals"		
. ,		
Chapter 19: Transition Metals and Coordination Chemistry; Answer Key; Question 19 In the answer to		
question 19 part (c) in		
chapter 19, HrCO should be	Revise "HrCO" to "HCrO" in the answer to	
HCrO.	question 19 part (c).	Туро
Chapter 19.1: Transition		
Metals and Coordination		
Chemistry; Section 19.1:		
Occurrence, Preparation,		
and Properties of Transition		
Metals and Their		
Compounds The answer to		
question 17 part (b) in		
chapter 19 is missing a	Add the missing reaction arrow to question 17	
reaction arrow.	part (b).	Туро
Chapter 19.1: Transition		
Metals and Coordination		
Chemistry; Section 19.1:		
Occurrence, Preparation,		
and Properties of Transition		
Metals and Their		
Compounds; Question 21		
The answer to question 21		
part (c) in chapter 19 does	Revise the answer to question 21 part (c) as	
not correspond with the question.	follows: (c) MnO4- + 5Fe2+ + 8H+> Mn2+ + 5Fe3+ + 4H2O	Tuno
	SF85+ + 4H2O	Туро
Chapter 19.2: Transition		
Metals and Coordination		
Chemistry, Section: Coordination Chemistry of		
Transition Metals Hi, I came		
across this in chapter 19		
section 2 of the OpenStax		
Chemistry title:		
http://cnx.org/contents/hav		
xkyvS@9.311:V5zcdoUo@6/		
Coordination-Chemistry-of-		
Tran Students are told "The		
four common exceptions are		
aqua (H2O), amine (NH3),"		
but at least since 1971 under		
the IUPAC Red Book	Update the spelling of NH3 "amine" to "ammine"	
recommendations NH3 has	throughout.	Туро

		1 1
been referred to as		
"ammine" so as to not		
confuse it with the		
functional group "amine"		
used in organic chemistry. I		
suspect this to be a		
typographical error. Please		
correct this so that students		
keep these concepts		
correctly in mind as they		
transfer between classes or		
schools.		
Chapter 20: Organic		
Chemistry; End of Chapter		
Exercises; Question 25 In the		
answer to question 25 part		
(a) in chapter 20, the double		
bond should be a triple	Revise the double bond to a triple bond in the	
bond.	answer to question 25 part (a).	Туро
Chapter 20: Organic		
Chemistry; key terms Add		
"addition reaction" to the		
list of key terms for chapter		
20. I suggest the definition,		
"reaction in which a double		
carbon-carbon bond forms a		
single carbon-carbon bond		
by the addition of a		
-	Add the key term addition reaction to Chapter	
an alkene."	20.	Туро
Chapter 20.1: Organic		
Chemistry; Section 20.1:		
Hydrocarbons; Subsection:		
The Basics of Organic		
_		
Nomenclature: Naming		
Alkanes; Example 20.5 The		
answer to the Check Your		
Learning for Example 20.5		
reads, "reactant: trans-3-		
hexene, product: 3,4-		
dichlorohexane" should be,	Revise the answer to the Check Your Learning in	
"reactant: 3-hexene (could	Example 20.5 Alkene Reactivity and Naming to	
be cis or trans) product: 3,4-	"reactant: cis-3-hexene product: 3,4-	
dichlorohexane."	dichlorohexane".	Туро
Chapter 20.3: Organic	Delete the misplaced structural formula in	
Chemistry; Section 20.3:	subsection Aldehydes and Ketones.	Туро
L	1	

Aldehydes, Ketones, Carboxylic Acids, and Esters; Subsection: Aldehydes and Ketones The third image under the subsection, "Aldehydes and Ketones," has an extraneous image at the top.		
Chapter 20.3: Organic Chemistry; Section 20.3: Aldehydes, Ketones, Carboxylic Acids, and Esters; Subsection: Aldehydes and Ketones; Example 20.10 In the Check Your Learning to Example 20.10, the phrase, "reduced relative to the marked carbon atom in ethanol," should be, "reduced relative to the carbon atom in CH_2 in ethanol."	Revise the first figure in the Check Your Learning in Example 20.10 Oxidation and Reduction in Organic Chemistry so that the "C" is marked red.	Туро
Chapter 20.3: Organic Chemistry; Section 20.3: Aldehydes, Ketones, Carboxylic Acids, and Esters; Subsection: Aldehydes and Ketones; Question 47 The answer to question 47 part (b) in chapter 20 does not make sense.	Revise the answer to question 47 part (b) as follows: (b) CH3COCH3	Туро
Chapter 20.4: Organic Chemistry; Section 20.1: Hydrocarbons; Subsection: The Basics of Organic Nomenclature: Naming Alkanes; Example 20.4 The phrase, "(as shown by the red numbers) so the branch is connected to carbon 3," should read, "(as shown by the blue numbers) so the branch is connected to carbon 3"	Reverse the use of "red" and "blue" in the solution to Example Example 20.4 Naming Substituted Alkanes.	Туро
Chapter 21.2: Nuclear Chemistry, Section: Nuclear	In Figure 21.4, add a negative sign before the first beta particle symbol.	Туро

Equations, Figure 21.4 In section 21.2 (nuclear equations) Figure 1, the first beta particle symbol is incorrect.		
Chapter 21.4: Nuclear Chemistry, Section: Transmutation and Nuclear Energy, Table 21.3 In Table 21.3. Californium row has an error. The reaction shown is for the preparation of Bk not Cf.	In Table 21.3 Preparation of Some of the Transuranium Elements, revise the row for californium as follows: californium Cf 98 242/96 Cm + 4/2 He> 245/98 Cf + 1/0 n	Major
Chapter 21.6: Nuclear Chemistry, Section: Biological Effects of Radiation, Subsection: Ionizing and Nonionizing Radiation The discussion of how radiation can damage biomolecules (chapter 21.6) shows ionized water (H2O cation) reacting with H2O to form hydronium cation plus hydroxyl ANION. This is obviously wrong. The text is correct in describing hydroxyl RADICAL as the bad actor, but the equation on p1219 and figure 21.32 have the typo. I.e. OH- should be OH• It's a typo, but it's totally egregious (chemically) and really needs to be fixed.	Revise OH- to OH(dot) in figure 21.32 and the figure above it.	Туро
Appendix B: Essential Mathematics; Section: Exponential Arithmetic In Appendix B, the sentence, "For example, 1,230,000,000 = 1.23 × 10^9 and 0.0000000036 × 10^?10." should read, "For example, 1,230,000,000 = 1.23 × 10^9 and 0.0000000036 = 3.6 × 10^?10."	In Appendix B, revise the sentence, "For example, 1,230,000,000 = 1.23 × 10^9 and 0.00000000036 × 10^?10." to "For example, 1,230,000,000 = 1.23 × 10^9 and 0.0000000036 = 3.6 × 10^?10."	Туро

Appendix B: Essential		
Mathematics; Section:		
Exponential Arithmetic;		
Subsection: Addition of		
Exponentials; Example B1		
The solution to Example B1		
should be, "3.00 × 10^?3 =	Revise the solution to Example B1 Adding	
300 × 10^?5."	Exponentials from 3.00 x 100^-3 to 3.00 x 10^-3.	Туро
Appendix H: Ionization		
Constants Of Weak Acids		
The Lewis structure for		
formic acid in Appendix H is		
missing a double bond		
between the C and the	Revise the Lewis structure for formic acid to have	
terminal O.	a double bond between Carbon and Oxygen.	Minor